Lines and Angles

SOLUTIONS

EXERCISE - 6.1

- Since, *AB* is a straight line.
- $\angle AOC + \angle COE + \angle EOB = 180^{\circ}$
- $(\angle AOC + \angle BOE) + \angle COE = 180^{\circ}$ or
- $70^{\circ} + \angle COE = 180^{\circ} [\because \angle AOC + \angle BOE = 70^{\circ} (Given)]$
- $\angle COE = 180^{\circ} 70^{\circ} = 110^{\circ}$
- Reflex $\angle COE = 360^{\circ} 110^{\circ} = 250^{\circ}$

Now, as *AB* and *CD* intersect at *O*.

- $\angle COA = \angle BOD$
- [Vertically opposite angles]
- But $\angle BOD = 40^{\circ}$

[Given]

- $\angle COA = 40^{\circ}$
- Also, $\angle AOC + \angle BOE = 70^{\circ}$
 - $40^{\circ} + \angle BOE = 70^{\circ} \Rightarrow \angle BOE = 70^{\circ} 40^{\circ} = 30^{\circ}$

Thus, $\angle BOE = 30^{\circ}$ and reflex $\angle COE = 250^{\circ}$.

- Since, *XOY* is a straight line.
- $b + a + \angle POY = 180^{\circ}$

But $\angle POY = 90^{\circ}$

[Given]

 $\therefore b + a = 180^{\circ} - 90^{\circ} = 90^{\circ}$

Also, we have a:b=2:3

$$a = \frac{2}{5}(a+b) = \frac{2}{5} \times 90^{\circ} = 36^{\circ}$$

and
$$b = \frac{3}{5} \times 90^{\circ} = 54^{\circ}$$

(Using (i))

Since, XY and MN intersect at O.

- $c = a + \angle POY$
- [Vertically opposite angles]
- $c = 36^{\circ} + 90^{\circ} = 126^{\circ}$

Thus, the required measure of $c = 126^{\circ}$.

- Since, *ST* is a straight line.
- $\angle PQR + \angle PQS = 180^{\circ}$

...(i)

[Linear pair]

Similarly, $\angle PRT + \angle PRQ = 180^{\circ}$

...(ii) [Linear Pair]

From (i) and (ii), we have

 $\angle PQR + \angle PQS = \angle PRT + \angle PRQ$

But $\angle PQR = \angle PRQ$

[Given]

- $\angle PQS = \angle PRT$
- Since, sum of all the angles around a point = 360°
- $x + y + z + w = 360^{\circ} \text{ or } (x + y) + (z + w) = 360^{\circ}$

But (x + y) = (z + w)

[Given]

- $(x + y) + (x + y) = 360^{\circ} \Rightarrow 2(x + y) = 360^{\circ}$
- $(x+y) = \frac{360^{\circ}}{2} = 180^{\circ}$
- AOB is a straight line.

[By linear pair axiom]

- Since, POQ is a straight line. 5.
- [Given]
- $\angle POS + \angle ROS + \angle ROQ = 180^{\circ}$
- But $OR \perp PQ$: $\angle ROQ = 90^{\circ}$
- $\angle POS + \angle ROS + 90^{\circ} = 180^{\circ}$
- $\angle POS + \angle ROS = 90^{\circ}$

 $\angle ROS = 90^{\circ} - \angle POS$...(i)

Also, we have $\angle ROS + \angle ROQ = \angle QOS$

$$\Rightarrow$$
 $\angle ROS + 90^{\circ} = \angle QOS$

$$\Rightarrow \angle ROS = \angle QOS - 90^{\circ} \qquad \qquad \dots (ii)$$

Adding (i) and (ii), we have $2 \angle ROS = (\angle QOS - \angle POS)$

- $\angle ROS = \frac{1}{2}(\angle QOS \angle POS)$
- Since, *XYP* is a straight line.

- $\angle XYZ + \angle ZYQ + \angle QYP = 180^{\circ}$
- \Rightarrow 64° + $\angle ZYQ$ + $\angle QYP$ = 180° [: $\angle XYZ$ = 64° (given)]
- $64^{\circ} + 2\angle QYP = 180^{\circ}$
 - [: YQ bisects $\angle ZYP$, so $\angle QYP = \angle ZYQ$]
- $2\angle QYP = 180^{\circ} 64^{\circ} = 116^{\circ}$

$$\Rightarrow \angle QYP = \frac{116^{\circ}}{2} = 58^{\circ}$$

- Reflex $\angle QYP = 360^{\circ} 58^{\circ} = 302^{\circ}$
- Since $\angle XYQ = \angle XYZ + \angle ZYQ$
- $\angle XYQ = 64^{\circ} + \angle QYP$
 - [:: $\angle XYZ = 64^{\circ}$ (given) and $\angle ZYQ = \angle QYP$]
- $\angle XYQ = 64^{\circ} + 58^{\circ} = 122^{\circ}$ $[:: \angle QYP = 58^{\circ}]$

Thus, $\angle XYQ = 122^{\circ}$ and reflex $\angle QYP = 302^{\circ}$

EXERCISE - 6.2

Let PQ be the given transversal intersecting AB and CD at E and F respectively as shown in the figure.

Clearly, $y = \angle CFQ = 130^{\circ}$ [Vertically opposite angles]...(i)

Again, PQ is a straight line and EA stands on it.

- $\angle AEP + \angle AEQ = 180^{\circ}$
- [By linear pair axiom]
- $50^{\circ} + x = 180^{\circ}$
- $x = 180^{\circ} 50^{\circ} = 130^{\circ}$... (ii)

From (i) and (ii), we get x = y,

which forms a pair of alternate interior angles.

 $AB \parallel CD$

Given, $AB \parallel CD$ and $CD \parallel EF$ Let PQ be the given transversal

Then, we have $AB \parallel EF$ and PQ is a transversal.

[: $AB \parallel CD$ and $CD \parallel EF \Rightarrow AB \parallel EF$] [Alternate interior angles] ...(i) $\chi = z$

Again, $AB \parallel CD$ and PQ is a transversal

 $\therefore x + y = 180^{\circ}$

[Co-interior angles] [Using (i)]

 \Rightarrow z + y = 180° But y: z = 3:7

$$\therefore z = \left[\frac{7}{(3+7)}\right] \times 180^{\circ} = \frac{7}{10} \times 180^{\circ} = 126^{\circ} \qquad ...(ii)$$

From (i) and (ii), we get $x = 126^{\circ}$.

Since, $AB \parallel CD$ and GE is a transversal.

 $\angle AGE = \angle GED$ [Alternate interior angles] But $\angle GED = 126^{\circ}$ [Given]

 $\angle AGE = 126^{\circ}$

Also, $\angle GEF + \angle FED = \angle GED$

 \Rightarrow $\angle GEF + 90^{\circ} = 126^{\circ}$ [: $EF \perp CD$ (Given)]

 $\angle GEF = 126^{\circ} - 90^{\circ} = 36^{\circ}$

Again, as $AB \parallel CD$ and GE is a transversal.

 $\angle FGE + \angle GED = 180^{\circ}$ [Co-interior angles]

 $\angle FGE + 126^{\circ} = 180^{\circ}$ \Rightarrow

 $\angle FGE = 180^{\circ} - 126^{\circ} = 54^{\circ}$

Thus, $\angle AGE = 126^{\circ}$, $\angle GEF = 36^{\circ}$ and $\angle FGE = 54^{\circ}$.

Let us first draw a line parallel to *ST* through *R*.

Since $PQ \parallel ST$ and $EF \parallel ST$

[Given] [By construction]

...(ii)

 $PQ \parallel EF$ and QR is a transversal.

 $\angle PQR = \angle QRF$ [Alternate interior angles] But $\angle POR = 110^{\circ}$ [Given]

 \therefore $\angle QRF = \angle QRS + \angle SRF = 110^{\circ}$...(i)

Again $ST \parallel EF$ and RS is a transversal

[Co-interior angles] $\angle RST + \angle SRF = 180^{\circ}$

 $130^{\circ} + \angle SRF = 180^{\circ}$

 $\angle SRF = 180^{\circ} - 130^{\circ} = 50^{\circ}$

Now, from (i) and (ii), we have

 $\angle QRS + 50^{\circ} = 110^{\circ}$

 \Rightarrow $\angle QRS = 110^{\circ} - 50^{\circ} = 60^{\circ}$

Thus, $\angle QRS = 60^{\circ}$.

We have $AB \parallel CD$ and PQ is a transversal.

 $\angle APQ = \angle PQR$ [Alternate interior angles] or $50^{\circ} = x$ [: $\angle APQ = 50^{\circ}$ (Given)]

Again, $AB \parallel CD$ and PR is a transversal.

 $\angle APR = \angle PRD$ [Alternate interior angles] $\angle APR = 127^{\circ}$ [: $\angle PRD = 127^{\circ}$ (Given)]

 $\angle APQ + \angle QPR = 127^{\circ} \Rightarrow$ $50^{\circ} + y = 127^{\circ}$

[: $\angle APQ = 50^{\circ}$ (Given)]

 $\Rightarrow y = 127^{\circ} - 50^{\circ} = 77^{\circ}$ Thus, $x = 50^{\circ}$ and $y = 77^{\circ}$.

Let us first draw ray $BL \perp PQ$ and $CM \perp RS$

Since, $PQ \parallel RS$, therefore $BL \parallel CM$

Now, *BL* || *CM* and *BC* is a transversal.

 \therefore $\angle LBC = \angle MCB$ [Alternate interior angles] ...(i) Since, angle of incidence = Angle of reflection

 \therefore $\angle ABL = \angle LBC$ and $\angle MCB = \angle MCD$

 $\Rightarrow \angle ABL = \angle MCD$ [Using (i)] ...(ii)

Now, Adding (i) and (ii), we get

 $\angle LBC + \angle ABL = \angle MCB + \angle MCD \Rightarrow \angle ABC = \angle BCD$ i.e., a pair of alternate interior angles are equal Hence, $AB \parallel CD$.

EXERCISE - 6.3

We have, $\angle TQP + \angle PQR = 180^{\circ}$

[By linear pair axiom]

 $110^{\circ} + \angle PQR = 180^{\circ}$

 \Rightarrow $\angle PQR = 180^{\circ} - 110^{\circ} = 70^{\circ}$

Since, the side QP of ΔPQR is produced to S.

 $\angle PQR + \angle PRQ = 135^{\circ}$

[By exterior angle property of a triangle]

 $70^{\circ} + \angle PRQ = 135^{\circ}$ [Using (i)]

 $\angle PRQ = 135^{\circ} - 70^{\circ} \Rightarrow \angle PRQ = 65^{\circ}$

In ΔXYZ , we have

$$\angle XYZ + \angle YZX + \angle ZXY = 180^{\circ}$$

[By angle sum property of a triangle]

But $\angle XYZ = 54^{\circ}$ and $\angle ZXY = 62^{\circ}$

 $54^{\circ} + \angle YZX + 62^{\circ} = 180^{\circ}$

$$\Rightarrow$$
 $\angle YZX = 180^{\circ} - 54^{\circ} - 62^{\circ} = 64^{\circ}$

Now, as YO and ZO are the bisectors of ∠XYZ and $\angle XZY$ respectively.

$$\therefore \angle OYZ = \frac{1}{2} \angle XYZ = \frac{1}{2} (54^{\circ}) = 27^{\circ}$$

and
$$\angle OZY = \frac{1}{2} \angle YZX = \frac{1}{2} (64^{\circ}) = 32^{\circ}$$

Now, in ΔOYZ , we have

$$\angle YOZ + \angle OYZ + \angle OZY = 180^{\circ}$$

[By angle sum property of a triangle]

 $\Rightarrow \angle YOZ + 27^{\circ} + 32^{\circ} = 180^{\circ}$

 $\angle YOZ = 180^{\circ} - 27^{\circ} - 32^{\circ} = 121^{\circ}$

Thus, $\angle OZY = 32^{\circ}$ and $\angle YOZ = 121^{\circ}$

Since, $AB \parallel DE$ and AE is a transversal.

So, $\angle BAC = \angle AED$ [Alternate interior angles] Lines and Angles 3

[Given]

But $\angle BAC = 35^{\circ}$ $\therefore \angle AED = 35^{\circ}$

Now, in $\triangle CDE$, we have $\angle CDE + \angle DEC + \angle DCE = 180^{\circ}$

[By angle sum property of a triangle]

 $\therefore 53^{\circ} + 35^{\circ} + \angle DCE = 180^{\circ}$

[: $\angle DEC = \angle AED = 35^{\circ}$ and $\angle CDE = 53^{\circ}$ (Given)]

 \Rightarrow $\angle DCE = 180^{\circ} - 53^{\circ} - 35^{\circ} = 92^{\circ}$

Thus, $\angle DCE = 92^{\circ}$

4. In $\triangle PRT$, we have $\angle P + \angle R + \angle PTR = 180^{\circ}$

[By angle sum property of a triangle] 6.

 \Rightarrow 95° + 40° + $\angle PTR = 180°$

[: $\angle P = 95^{\circ}$, $\angle R = 40^{\circ}$ (Given)]

 \Rightarrow $\angle PTR = 180^{\circ} - 95^{\circ} - 40^{\circ} = 45^{\circ}$

Now, as *PQ* and *RS* intersect at *T*.

∴ $\angle PTR = \angle QTS$ [Vertically opposite angles] ⇒ $\angle QTS = 45^{\circ}$ [∴ $\angle PTR = 45^{\circ}$]

Now, in $\triangle TQS$, we have

 $\angle TSQ + \angle STQ + \angle SQT = 180^{\circ}$

[By angle sum property of a triangle]

 \Rightarrow 75° + 45° + $\angle SQT$ =180°

 $[\because \angle TSQ = 75^{\circ} \text{ and } \angle STQ = 45^{\circ}]$

 \Rightarrow $\angle SQT = 180^{\circ} - 75^{\circ} - 45^{\circ} = 60^{\circ}$

Thus, $\angle \widetilde{SQT} = 60^{\circ}$

5. In $\triangle QRS$, the side SR is produced to T.

 $\therefore \angle QRT = \angle RQS + \angle RSQ$

[By exterior angle property of a triangle]

But $\angle RQS = 28^{\circ}$ and $\angle QRT = 65^{\circ}$

So, $28^{\circ} + \angle RSQ = 65^{\circ}$

 \Rightarrow $\angle RSQ = 65^{\circ} - 28^{\circ} = 37^{\circ}$

Since, $PQ \parallel SR$ and QS is a transversal.

∴ $\angle PQS = \angle RSQ = 37^{\circ}$ [Alternate interior angles] ⇒ $x = 37^{\circ}$

Again, $PQ \perp PS \implies \angle P = 90^{\circ}$

Now, in $\triangle PQS$, we have $\angle P + \angle PQS + \angle PSQ = 180^{\circ}$

[By angle sum property of a triangle]

 \Rightarrow 90° + 37° + y = 180°

 \Rightarrow $y = 180^{\circ} - 90^{\circ} - 37^{\circ} = 53^{\circ}$

Thus, $x = 37^{\circ}$ and $y = 53^{\circ}$

6. In $\triangle PQR$, side QR is produced to S, so by exterior angle property,

 $\angle PRS = \angle P + \angle PQR$

$$\Rightarrow \frac{1}{2} \angle PRS = \frac{1}{2} \angle P + \frac{1}{2} \angle PQR \qquad \dots (i)$$

$$\Rightarrow \angle TRS = \frac{1}{2} \angle P + \angle TQR$$
 (ii)

[: QT and RT are bisectors of $\angle PQR$ and $\angle PRS$ respectively.]

Now, for the $\triangle QRT$, we have

$$\angle TRS = \angle TQR + \angle T$$
 ...(iii)

[By exterior angle property of a triangle]

From (ii) and (iii), we have

$$\angle TQR + \frac{1}{2} \angle P = \angle TQR + \angle T$$

$$\Rightarrow \frac{1}{2} \angle P = \angle T \Rightarrow \frac{1}{2} \angle QPR = \angle QTR$$

$$\Rightarrow \angle QTR = \frac{1}{2} \angle QPR$$

MtG BEST SELLING BOOKS FOR CLASS 9

