[By ASA congruence]

Triangles

SOLUTIONS

EXERCISE - 7.1

In quadrilateral ACBD, we have AC = AD and ABbeing the bisector of $\angle A$.

Now, in $\triangle ABC$ and $\triangle ABD$,

AC = AD[Given]

 $\angle CAB = \angle DAB$ [: AB bisects $\angle CAD$]

AB = AB[Common]

 $\Delta ABC \cong \Delta ABD$ [By SAS congruence] So, BC = BD[By C.P.C.T.]

In quadrilateral *ABCD*, we have

AD = BC and $\angle DAB = \angle CBA$

In $\triangle ABD$ and $\triangle BAC$,

AD = BC[Given] $\angle DAB = \angle CBA$ [Given]

AB = AB[Common]

[By SAS congruence] $\triangle ABD \cong \triangle BAC$ BD = AC[By C.P.C.T.]

and $\angle ABD = \angle BAC$ [By C.P.C.T.]

In $\triangle OBC$ and $\triangle OAD$, we have

[Each equals 90°] $\angle OBC = \angle OAD$

BC = AD[Given]

 $\angle BOC = \angle AOD$ [Vertically opposite angles]

[By AAS congruence] $\triangle OBC \cong \triangle OAD$

 \Rightarrow OB = OA[By C.P.C.T.]

i.e., O is the mid-point of AB.

Thus, CD bisects AB.

 \therefore $p \parallel q$ and AC is a transversal.

 $\angle BAC = \angle DCA$...(i)

[Alternate interior angles]

Also $l \parallel m$ and AC is a transversal.

 $\angle BCA = \angle DAC$...(ii)

[Alternate interior angles]

Now, in $\triangle ABC$ and $\triangle CDA$, we have

 $\angle BAC = \angle DCA$ [From (i)]

AC = AC[Common]

 $\angle BCA = \angle DAC$ [From (ii)] $\Delta ABC \cong \Delta CDA$

[By ASA congruence]

We have, *l* is the bisector of $\angle QAP$.

 $\angle QAB = \angle PAB$ and

 $\angle Q = \angle P$ [Each equals 90°]

 \Rightarrow $\angle ABQ = \angle ABP$

[By angle sum property of triangle]

Now, in $\triangle APB$ and $\triangle AQB$, we have

 $\angle ABP = \angle ABQ$ [From (i)]

AB = AB[Common]

 $\angle PAB = \angle QAB$ [Given]

 $\triangle APB \cong \triangle AQB$ (ii) Since $\triangle APB \cong \triangle AQB$

 $\Rightarrow BP = BQ$ [By C.P.C.T.]

or Perpendicular distance of B from AP

= Perpendicular distance of B from AQ

Thus, the point *B* is equidistant from the arms of $\angle A$.

We have, $\angle BAD = \angle EAC$

Adding $\angle DAC$ on both sides, we have

 $\angle BAD + \angle DAC = \angle EAC + \angle DAC$

 $\Rightarrow \angle BAC = \angle DAE$

Now, in $\triangle ABC$ and $\triangle ADE$, we have

[Proved above] $\angle BAC = \angle DAE$

AB = AD[Given]

AC = AE[Given]

 $\triangle ABC \cong \triangle ADE$ [By SAS congruence]

 \Rightarrow BC = DE [By C.P.C.T.]

We have, *P* is the mid-point of *AB*.

AP = BP

 $\angle EPA = \angle DPB$ [Given]

Adding ∠EPD on both sides, we get

 $\angle EPA + \angle EPD = \angle DPB + \angle EPD$

 $\angle APD = \angle BPE$

(i) Now, in $\triangle DAP$ and $\triangle EBP$, we have

 $\angle PAD = \angle PBE$ $[:: \angle BAD = \angle ABE]$

AP = BP[Proved above]

 $\angle DPA = \angle EPB$ [Proved above]

[By ASA congruence] $\Delta DAP \cong \Delta EBP$

(ii) Since, $\Delta DAP \cong \Delta EBP$

AD = BE[By C.P.C.T.]

Since *M* is the mid-point of *AB*. [Given]

BM = AM

(i) In $\triangle AMC$ and $\triangle BMD$, we have

CM = DM[Given]

 $\angle AMC = \angle BMD$ [Vertically opposite angles] AM = BM[Proved above]

[By SAS congruence] $\therefore \Delta AMC \cong \Delta BMD$

(ii) Since $\triangle AMC \cong \triangle BMD$

 $\Rightarrow \angle MAC = \angle MBD$ [By C.P.C.T.]

But they form a pair of alternate interior angles.

 $AC \parallel DB$

Now, *BC* is a transversal which intersects parallel lines *AC* and *DB*.

 \therefore $\angle BCA + \angle DBC = 180^{\circ}$ [Co-interior angles]

But $\angle BCA = 90^{\circ}$ [: $\triangle ABC$ is right angled at C]

∴ 90° + ∠DBC = 180°

⇒ ∠DBC = 90°

(iii) Since, $\triangle AMC \cong \triangle BMD$

 $\therefore \quad AC = BD$

[By C.P.C.T.]

Now, in $\triangle DBC$ and $\triangle ACB$, we have

BD = CA [Proved above] $\angle DBC = \angle ACB$ [Each equals 90°]

BC = CB

[Common]
[By SAS congruence]

(iv) As $\Delta DBC \cong \Delta ACB$

(iv) As $\triangle DBC \cong \triangle AC$ $\Rightarrow DC = AB$

 $\triangle DBC \cong \Delta ACB$

But DM = CM

[By C.P.C.T.] [Given]

$$\therefore CM = \frac{1}{2}DC = \frac{1}{2}AB$$

EXERCISE - 7.2

1. (i) Let *BD* and *CE* are the bisectors of $\angle B$ and $\angle C$ respectively.

In $\triangle ABC$, we have AC = AB

 \therefore $\angle ABC = \angle ACB$

[Angles opposite to equal sides of a triangle are equal]

$$\Rightarrow \frac{1}{2} \angle ABC = \frac{1}{2} \angle ACB$$

- $\Rightarrow \angle OBC = \angle OCB$
- \Rightarrow OC = OB

[Sides opposite to equal angles of a triangle are equal]

(ii) In $\triangle ABO$ and $\triangle ACO$, we have

$$\overrightarrow{AB} = AC$$
 [Given]

 $\angle OBA = \angle OCA$

$$\left[\because \frac{1}{2} \angle B = \frac{1}{2} \angle C\right]$$

OB = OC

[Proved above]

 $\therefore \quad \Delta ABO \cong \Delta ACO$

[By SAS congruence] [By C.P.C.T.]

 $\Rightarrow \angle OAB = \angle OAC$ \Rightarrow AO bisects $\angle A$.

- 2. Since *AD* is bisector of *BC*.
- \therefore BD = CD

Now, in $\triangle ABD$ and $\triangle ACD$, we have

AD = AD [Common] $\angle ADB = \angle ADC$ [Each equals 90°] BD = CD [Proved above]

 $\therefore \quad \Delta ABD \cong \Delta ACD \qquad \text{[By SAS congruence]}$

 $\Rightarrow AB = AC$ [By C.P.C.T.]

Thus, ABC is an isosceles triangle.

3. Given, $\triangle ABC$ is an isosceles triangle with AB = AC

 $\Rightarrow \angle ACB = \angle ABC$

[Angles opposite to equal sides of a triangle are equal] $\Rightarrow \angle BCE = \angle CBF$

 $\Rightarrow \angle BCE = \angle CBF$

Now, in $\triangle BEC$ and $\triangle CFB$, we have

 $\angle BCE = \angle CBF$ $\angle BEC = \angle CFB$ [Proved above] [Each equals 90°] BC = CB [Common] $\therefore \Delta BEC \cong \Delta CFB$ [By AAS congruence]

So, BE = CF [By C.P.C.T.]

4. (i) In $\triangle ABE$ and $\triangle ACF$, we have

 $\angle AEB = \angle AFC$ [Each 90° as $BE \perp AC$ and $CF \perp AB$] $\angle A = \angle A$ [Common]

BE = CF [Given]

 $\therefore \quad \Delta ABE \cong \Delta ACF \qquad \qquad [By AAS congruence]$

(ii) Since, $\triangle ABE \cong \triangle ACF$

 $\therefore AB = AC$ [By C.P.C.T.]

5. In $\triangle ABC$, we have

AB = AC [: ABC is an isosceles triangle] $\therefore \angle ABC = \angle ACB$...(i)

[Angles opposite to equal sides of a triangle are equal] Again, in $\triangle BDC$, we have

BD = CD [: BDC is an isosceles triangle]

 $\therefore \angle CBD = \angle BCD \qquad \qquad \dots \text{(ii)}$

[Angles opposite to equal sides of a triangle are equal] Adding (i) and (ii), we have

 $\angle ABC + \angle CBD = \angle ACB + \angle BCD$

 \Rightarrow $\angle ABD = \angle ACD$

6. Given, AB = AC and AB = AD

AC = AD

Now, in $\triangle ABC$, we have

 $\angle B + \angle ACB + \angle BAC = 180^{\circ}$ [Angle sum property of a triangle]

$$\Rightarrow 2\angle ACB + \angle BAC = 180^{\circ}$$
 triangle]
$$\Rightarrow (i)$$

[: $\angle B = \angle ACB$ (Angles opposite to equal sides of a triangle are equal)]

Similarly, in $\triangle ACD$,

 $\angle D + \angle ACD + \angle CAD = 180^{\circ}$ [Angle sum property of a triangle]

⇒
$$2\angle ACD + \angle CAD = 180^{\circ}$$
 ...(ii)
[: $\angle D = \angle ACD$ (Angles opposite to

 \therefore $\angle D = \angle ACD$ (Angles opposite to equal sides of a triangle are equal)]

Adding (i) and (ii), we have

$$2\angle ACB + \angle BAC + 2\angle ACD + \angle CAD = 180^{\circ} + 180^{\circ}$$

$$\Rightarrow$$
 2[$\angle ACB + \angle ACD$] + [$\angle BAC + \angle CAD$] = 360°

 \Rightarrow 2 $\angle BCD + 180^{\circ} = 360^{\circ}$

[: $\angle BAC$ and $\angle CAD$ form a linear pair]

[Given]

 \Rightarrow 2 $\angle BCD = 360^{\circ} - 180^{\circ} = 180^{\circ}$

$$\Rightarrow \angle BCD = \frac{180^{\circ}}{2} = 90^{\circ}$$

7. In $\triangle ABC$, we have

AB = AC $\therefore \angle ACB = \angle ABC$

[Angles opposite to equal sides of a

triangle are equal] $A \vdash A \vdash A \vdash B$ Now, $\angle A + \angle B + \angle C = 180^{\circ}$ [Angle sum property of a triangle]

$$\Rightarrow 90^{\circ} + \angle B + \angle C = 180^{\circ} \qquad [\angle A = 90^{\circ} (Given)]$$

$$\Rightarrow \angle B + \angle C = 180^{\circ} - 90^{\circ} = 90^{\circ}$$

But
$$\angle ABC = \angle ACB$$
, i.e., $\angle B = \angle C$

∴
$$\angle B = \angle C = \frac{90^{\circ}}{2} = 45^{\circ}$$

Thus, $\angle B = 45^{\circ}$ and $\angle C = 45^{\circ}$

Triangles 3

In $\triangle ABC$, we have

$$AB = BC = CA$$
 [: ABC is an equilateral triangle]
Now, $AB = BC \Rightarrow \angle A = \angle C$...(i)

[Angles opposite to equal sides of a triangle are equal] Similarly, $AC = BC \implies \angle A = \angle B$

From (i) and (ii), we have $\angle A = \angle B = \angle C$

Let $\angle A = \angle B = \angle C = x$

Since, $\angle A + \angle B + \angle C = 180^{\circ}$

[Angle sum property of a triangle]

- $x + x + x = 180^{\circ} \implies 3x = 180^{\circ}$
- $\Rightarrow x = 60^{\circ}$
- $\angle A = \angle B = \angle C = 60^{\circ}$

Thus, the angles of an equilateral triangle are 60° each.

EXERCISE - 7.3

(i) In $\triangle ABD$ and $\triangle ACD$, we have

AB = AC[Given] AD = AD[Common] BD = CD[Given] [By SSS congruence] \therefore $\triangle ABD \cong \triangle ACD$ \Rightarrow $\angle BAD = \angle CAD$ [By C.P.C.T.] $\angle BAP = \angle CAP$...(1)

(ii) In $\triangle ABP$ and $\triangle ACP$, we have

AB = AC[Given] $\angle BAP = \angle CAP$ [From (1)]

AP = AP[Common] \therefore $\triangle ABP \cong \triangle ACP$ [By SAS congruence]

(iii) Since, $\angle BAP = \angle CAP$ [From (1)]

AP is the bisector of $\angle A$.

Again, in $\triangle BDP$ and $\triangle CDP$, we have

BD = CD[Given] DP = DP[Common]

BP = CP[:: $\triangle ABP \cong \triangle ACP$]

[By SSS congruence] $\Delta BDP \cong \Delta CDP$

 $\angle BDP = \angle CDP$ [By C.P.C.T.]

 \Rightarrow DP (or AP) is the bisector of $\angle BDC$

AP is the bisector of $\angle A$ as well as $\angle D$.

(iv) As, $\triangle ABP \cong \triangle ACP$

 $\angle APB = \angle APC$ and BP = CP[By C.P.C.T.] But $\angle APB + \angle APC = 180^{\circ}$ [Linear pair]

 $\angle APB = \angle APC = 90^{\circ}$

 $AP \perp BC$.

Hence, *AP* is the perpendicular bisector of *BC*.

(i) In right $\triangle ABD$ and $\triangle ACD$,

AB = AC[Given]

 $\angle ADB = \angle ADC$ [Each equals 90°] AD = AD[Common]

 $\triangle ABD \cong \triangle ACD$ [By RHS congruence]

So, BD = CD[By C.P.C.T.] $\stackrel{\angle}{B}$

D is the mid-point of BC or AD bisects BC.

(ii) Since, $\triangle ABD \cong \triangle ACD$,

 $\angle BAD = \angle CAD$ [By C.P.C.T.]

So, AD bisects $\angle A$.

In $\triangle ABC$, AM is the median [Given]

 $\therefore BM = \frac{1}{2}BC$...(1) In $\triangle PQR$, PN is the median

[Given]

...(2)

$$\therefore QN = \frac{1}{2}QR$$

Also, $BC = QR \implies \frac{1}{2}BC = \frac{1}{2}QR$

 $\Rightarrow BM = ON$ [From (1) and (2)] ...(3)

(i) In $\triangle ABM$ and $\triangle PQN$, we have

AB = PQ[Given] AM = PN[Given] BM = ON[From (3)]

[By SSS congruence] $\Delta ABM \cong \Delta PQN$

(ii) Since $\triangle ABM \cong \triangle PQN$

 $\Rightarrow \angle B = \angle Q$ [By C.P.C.T.] ...(4)

Now, in $\triangle ABC$ and $\triangle PQR$, we have

 $\angle B = \angle Q$ [From (4)] AB = PQ[Given] BC = QR[Given]

 $\triangle ABC \cong \triangle PQR$ [By SAS congruence]

Since, $BE \perp AC$ [Given]

ΔBEC is a right triangle such that

 $\angle BEC = 90^{\circ}$

Similarly, $\angle CFB = 90^{\circ}$

Now, in right ΔBEC and right ΔCFB , we have

BE = CF[Given] BC = CB[Common]

 $\angle BEC = \angle CFB = 90^{\circ}$

[By RHS congruence] $\Delta BEC \cong \Delta CFB$ So, $\angle BCE = \angle CBF$ [By C.P.C.T.]

or $\angle BCA = \angle CBA$

Now, in $\triangle ABC$, $\angle BCA = \angle CBA \Rightarrow AB = AC$

[Sides opposite to equal angles of a triangle are equal]

ABC is an isosceles triangle.

We have, $AP \perp BC$

 $\angle APB = 90^{\circ}$ and $\angle APC = 90^{\circ}$

In $\triangle ABP$ and $\triangle ACP$, we have

 $\angle APB = \angle APC$ [Each equals 90°]

AB = AC[Given] AP = AP[Common]

[By RHS congruence] $\therefore \Delta ABP \cong \Delta ACP$

So, $\angle B = \angle C$ [By C.P.C.T.]

EXERCISE - 7.4

Let us consider $\triangle ABC$ such that $\angle B = 90^{\circ}$.

 \therefore $\angle A + \angle B + \angle C = 180^{\circ}$

 $\Rightarrow [\angle A + \angle C] + \angle B = 180^{\circ}$

 $\Rightarrow \angle A + \angle C = 90^{\circ}$

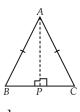
 $\Rightarrow \angle A + \angle C = \angle B$

 \therefore $\angle B > \angle A$ and $\angle B > \angle C$

 \Rightarrow Side opposite to $\angle B$ is longer than the side opposite to $\angle A$. i.e., AC > BC. Similarly, AC > AB.

Therefore, we get AC is the longest side. But AC is the hypotenuse of the triangle.

Thus, hypotenuse is the longest side.



2. $\angle ABC + \angle PBC = 180^{\circ}$ [Linear pair] and $\angle ACB + \angle QCB = 180^{\circ}$ [Linear pair] But $\angle PBC < \angle QCB$ [Given]

 $180^{\circ} - \angle PBC > 180^{\circ} - \angle QCB$

 $\angle ABC > \angle ACB$

AC > AB[Side opposite to greater angle is longer]

Since, $\angle B < \angle A$

 $\angle A > \angle B$

$$\therefore OB > OA \qquad ...(i)$$
Similarly, $OC > OD$...(ii)

Adding (i) and (ii), we have OB + OC > OA + OD

 $BC > AD \implies AD < BC$

Let us join *AC*.

Now, in $\triangle ABC$, BC > AB

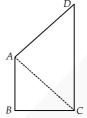
[:: AB is the smallest side of the]quadrilateral ABCD]

 $\Rightarrow \angle BAC > \angle BCA$

...(i)

[Angle opposite to longer side is larger] Again, in $\triangle ACD$, CD > AD

[: CD] is the longest side of the quadrilateral ABCD]



[Given]

...(ii)

[Angle opposite to longer side is larger] Adding (i) and (ii), we get

 $\angle BAC + \angle CAD > \angle BCA + \angle ACD$

 $\Rightarrow \angle A > \angle C$

Similarly, by joining *BD*, we get $\angle B > \angle D$.

In $\triangle PQR$, PS bisects $\angle QPR$ 5.

[Given]

 $\angle QPS = \angle RPS$ and PR > PQ

[Given]

...(i)

 $\angle PQS > \angle PRS$

[Angle opposite to longer side is larger]

$$\Rightarrow \angle PQS + \angle QPS > \angle PRS + \angle RPS$$

...(i) $[\angle QPS = \angle RPS]$

Exterior $\angle PSR = [\angle PQS + \angle QPS]$ and

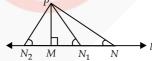
Exterior $\angle PSQ = [\angle PRS + \angle RPS]$

[An exterior angle is equal to the sum of interior opposite angles]

Now, from (i), we have $\angle PSR > \angle PSQ$.

Let us consider the $\triangle PMN$ such that $\angle M = 90^{\circ}$. Since, $\angle PMN + \angle N + \angle MPN = 180^{\circ}$ [Sum of angles of a triangle]

and $\angle M = 90^{\circ}$ [:: $PM \perp l$]



So, $\angle N + \angle MPN = \angle PMN \Rightarrow \angle N < \angle PMN$

PM < PN

Similarly, $PM < PN_1$

...(ii) and $PM < PN_2$...(iii)

From (i), (ii) and (iii), we have PM is the smallest line segment drawn from P on the line l. Thus, the perpendicular line segment is the shortest line segment drawn on a line from a point not on it.

EXERCISE - 7.5

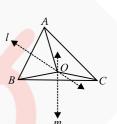
Let us consider a $\triangle ABC$.

Draw *l*, the perpendicular bisector of AB.

Draw m, the perpendicular bisector of BC.

Let the two perpendicular bisectors l and m meet at O.

O is the required point which is equidistant from all the vertices A, B and C.



Note: If we draw a circle with centre *O* and radius *OA*, *OB* or *OC*, then it will pass through *A*, *B* and *C*. The point O is called circumcentre of the triangle.

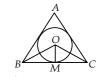
2. Let us consider a $\triangle ABC$. Draw *l*, the bisector of $\angle B$.

Draw m, the bisector of $\angle C$.

Let the two bisectors *l* and *m* meet at *O*. Thus, *O* is the required point which is

equidistant from the sides of $\triangle ABC$. **Note:** If we draw $OM \perp BC$ and draw a circle with O as centre and

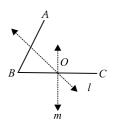
OM as radius, then the circle will touch the sides of the triangle.



Point *O* is called the incentre of the triangle.

Let us join A and B, and draw l, the perpendicular bisector of AB.

Now, join B and C, and draw m, the perpendicular bisector of BC. Let the perpendicular bisectors *l* and *m* meet at *O*. The point *O* is the required point where the ice cream parlour be set up.



Note: If we join *A* and *C* and draw the perpendicular bisectors, then it will also meet (or pass through) the point O.

- It is an activity. We require 150 equilateral triangles of side 1 cm in the figure (i) and 300 equilateral triangles in the figure (ii).
- The figure (ii) has more triangles.

MtG BEST SELLING BOOKS FOR CLASS 9

