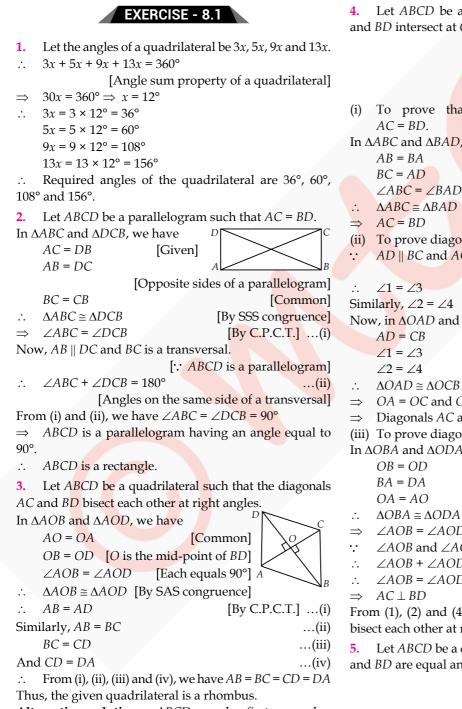
Quadrilaterals

SOLUTIONS



NCERT FOCUS

Alternative solution : ABCD can be first proved a parallelogram. Then proving one pair of adjacent sides equal will result in rhombus.

Let ABCD be a square such that its diagonals AC and BD intersect at O.

- To prove that the diagonals are equal, *i.e.*, AC = BD.
- In $\triangle ABC$ and $\triangle BAD$, we have
 - AB = BA

 - $\Delta ABC \cong \Delta BAD$ [By SAS congruence] [By C.P.C.T.] ...(1)
- (ii) To prove diagonals bisect each other.
 - $AD \parallel BC$ and AC is a transversal.

[A square is a parallelogram] [Alternate interior angles]

[Common]

[Sides of a square]

[Each equals 90°]

CHAPTER

Now, in $\triangle OAD$ and $\triangle OCB$, we have

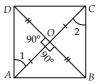
	AD = CB	[Sides of a square]
	$\angle 1 = \angle 3$	[Proved]
	$\angle 2 = \angle 4$	[Proved]
·.	$\Delta OAD \cong \Delta OCB$	[By ASA congruence]
⇒	OA = OC and $OD = OB$	[By C.P.C.T.]
⇒	Diagonals <i>AC</i> and <i>BD</i> bisect each other at <i>O</i> (2)	
:::)	To prove diagonals intersect at right angles	

(iii) To prove diagonals intersect at right angles. In $\triangle OBA$ and $\triangle ODA$, we have

OB = OD [Proved		
BA = DA [Sides of a square		
OA = AO [Common		
$\therefore \Delta OBA \cong \Delta ODA \qquad \qquad [By SSS congruence]$		
$\Rightarrow \angle AOB = \angle AOD \qquad [By C.P.C.T.] \dots (3)$		
$\angle AOB$ and $\angle AOD$ form a linear pair.		
$\therefore \angle AOB + \angle AOD = 180^{\circ}$		
$\therefore \angle AOB = \angle AOD = 90^{\circ} $ [By (3)		
$\Rightarrow AC + BD$ (4)		

From (1), (2) and (4), we get AC and BD are equal and bisect each other at right angles.

Let *ABCD* be a quadrilateral such that diagonals *AC* and BD are equal and bisect each other at right angles.



MtG 100 PERCENT Mathematics Class-9

Now, in $\triangle AOD$ and $\triangle AOB$, we have $\angle AOD = \angle AOB$ [Each equals 90°] AO = OA[Common] OD = OB[:: AC bisects BD] $\Delta AOD \cong \Delta AOB$ [By SAS congruence] $\Rightarrow AD = AB$ [By C.P.C.T.] ...(i) Similarly, we have AB = BC...(ii) BC = CD...(iii) CD = DA...(iv) From (i), (ii), (iii) and (iv), we have AB = BC = CD = DA.:. Quadrilateral *ABCD* has all sides equal. In $\triangle AOD$ and $\triangle COB$, we have AO = CO[Given] OD = OB[Given] $\angle AOD = \angle COB$ [Vertically opposite angles] [By SAS congruence] So, $\triangle AOD \cong \triangle COB$ ∴ ∠1 = ∠2 [By C.P.C.T.] But they form a pair of alternate interior angles. \therefore AD || BC Similarly, $AB \parallel DC$ \therefore *ABCD* is a parallelogram. And a parallelogram having its all sides equal is a rhombus. \therefore *ABCD* is a rhombus. Now, in $\triangle ABC$ and $\triangle BAD$, we have AC = BD[Given] BC = AD[Proved] AB = BA[Common] $\Delta ABC \cong \Delta BAD$ [By SSS congruence] *.*.. $\therefore \ \angle ABC = \angle BAD$ [By C.P.C.T.] ...(v)Now, since $AD \parallel BC$ and AB is a transversal. $\therefore \ \angle ABC + \angle BAD = 180^{\circ}$...(vi) [Interior angles on the same side of the transversal] $\Rightarrow \angle ABC = \angle BAD = 90^{\circ}$ [By (v) and (vi)]So, rhombus ABCD is having one angle equal to 90°. Thus, ABCD is a square. We have a parallelogram 6. ABCD in which diagonal AC bisects $\angle A \Rightarrow \angle 1 = \angle 2$ (i) Since *ABCD* is a parallelogram. AB || DC and AC is a transversal. ÷. $\angle 1 = \angle 3$ [Alternate interior angles] ...(1) ÷. Also, $BC \parallel AD$ and AC is a transversal. [Alternate interior angles] ...(2) $\therefore \quad \angle 2 = \angle 4$ Also, $\angle 1 = \angle 2$ [:: AC bisects $\angle A$] ...(3) From (1), (2) and (3), we have $\angle 3 = \angle 4 \implies AC$ bisects $\angle C$. (ii) In $\triangle ABC$, we have [From (2) and (3)] $\angle 1 = \angle 4$ $\Rightarrow BC = AB$...(4) [:: Sides opposite to equal angles of a triangle are equal] Similarly, AD = DC...(5) Also, ABCD is a parallelogram [Given]

 $\therefore AB = DC$...(6) From (4), (5) and (6), we have AB = BC = CD = DAThus, *ABCD* is a rhombus. 7. We have, a rhombus ABCD $\therefore AB = BC = CD = DA$ Also, *AB* || *CD* and *AD* || *BC* Now, in $\triangle ADC$, $AD = CD \Rightarrow \angle 1 = \angle 2$...(i) [Angles opposite to equal sides of a triangle are equal] Also, since $AD \parallel BC$ and AC is the transversal. [Alternate interior angles] ...(ii) $\therefore \angle 1 = \angle 3$ From (i) and (ii), we have $\angle 2 = \angle 3$...(iii) Since, *AB* || *DC* and *AC* is transversal. $\therefore \angle 2 = \angle 4$ [Alternate interior angles] ...(iv) From (i) and (iv), we have $\angle 1 = \angle 4$...(v) From (iii) and (v), we have AC bisects $\angle C$ as well as $\angle A$. Similarly, we can prove that *BD* bisects $\angle B$ as well as ∠D.

8. We have a rectangle *ABCD* such that *AC* bisects $\angle A$ as well as $\angle C$.

$$\Rightarrow \ \angle 1 = \angle 4 \text{ and } \angle 2 = \angle 3 \qquad \dots(1)$$

- (i) Since every rectangle is a parallelogram.
- ∴ *ABCD* is a parallelogram.
- \Rightarrow *AB* || *CD* and *AC* is a transversal.

 $\angle 3 = \angle 4$

In $\triangle ABC$, $\angle 3 = \angle 4$

 $\Rightarrow AB = BC$

[Sides opposite to equal angles of a triangle are equal]

- \Rightarrow *ABCD* is a rectangle having adjacent sides equal.
- \Rightarrow *ABCD* is a square.

(ii) Since *ABCD* is a square and diagonals of a square bisect the opposite angles.

So, *BD* bisects $\angle B$ as well as $\angle D$.

9. We have parallelogram *ABCD*, *BD* is the diagonal and points *P* and *Q* are such that

[Given]

- (i) Since $AD \parallel BC$ and BD is a transversal.
- $\therefore \quad \angle ADB = \angle CBD \qquad \qquad [Alternate interior angles]$
- $\Rightarrow \angle ADP = \angle CBQ$

DP = BQ

Now, in $\triangle APD$ and $\triangle CQB$, we have

AD = CB [Opposite sides of parallelogram ABCD] PD = QB [Given] ∠ADP = ∠CBQ [Proved] $∴ ΔAPD \cong ΔCQB$ [By SAS congruence]

Quadrilaterals

(ii) Since $\triangle APD \cong \triangle CQB$ [Proved] AP = CQ[By C.P.C.T.] (iii) Since *AB* || *CD* and *BD* is a transversal. $\angle ABD = \angle CDB$ [Alternate interior angles] ÷. $\angle ABQ = \angle CDP$ \Rightarrow Now, in $\triangle AQB$ and $\triangle CPD$, we have QB = PD[Given] $\angle ABQ = \angle CDP$ [Proved] AB = CD[Opposite sides of a parallelogram] $\Delta AQB \cong \Delta CPD$ [By SAS congruence] (iv) Since $\triangle AQB \cong \triangle CPD$ [Proved] AO = CP[By C.P.C.T.] ÷. (v) In quadrilateral APCQ, AP = CQ and AQ = CP[Proved] APCQ is a parallelogram. **10.** (i) In $\triangle APB$ and $\triangle CQD$, we have $\angle APB = \angle CQD$ [Each equals 90°] AB = CD[Opposite sides of a parallelogram] $\angle ABP = \angle CDQ$ [:: *AB* || *CD* and *BD* is a transversal \Rightarrow Alternate angles are equal] [By AAS congruence] $\Delta APB \cong \Delta CQD$ ÷. (ii) Since $\triangle APB \cong \triangle CQD$ [Proved] AP = CQ[By C.P.C.T.] *.*.. **11.** (i) In guadrilateral *ABED*, we have AB = DE[Given] AB || DE [Given] So, ABED is a quadrilateral in which a pair of opposite sides (*AB* and *DE*) are parallel and of equal length. ABED is a parallelogram. *.*... (ii) In quadrilateral BEFC, we have BC = EF[Given] BC || EF [Given] So, *BEFC* is a quadrilateral in which a pair of opposite sides (BC and EF) are parallel and of equal length. \therefore *BEFC* is a parallelogram. (iii) :: ABED is a parallelogram [Proved] $\therefore AD \parallel BE \text{ and } AD = BE$ [Opposite sides of a parallelogram] ...(1) Also, *BEFC* is a parallelogram. [Proved] $BE \parallel CF$ and BE = CF*.*.. [Opposite sides of a parallelogram] ...(2) From (1) and (2), we have $AD \parallel CF \text{ and } AD = CF$ (iv) Since $AD \parallel CF$ and AD = CF[Proved] So, in quadrilateral ACFD, one pair of opposite sides (AD and CF) are parallel and equal in length. Quadrilateral ACFD is a parallelogram. (v) Since *ACFD* is a parallelogram. [Proved] ÷. AC = DF[Opposite sides of a parallelogram] (vi) In $\triangle ABC$ and $\triangle DEF$, we have AB = DE[Given] BC = EF[Given] AC = DF[Proved] $\Delta ABC \cong \Delta DEF$ [By SSS congruence] *.*..

12. Produce *AB* to *E* and draw *CE* || *AD*. Join AC and BD. (i) :: $AB \parallel DC \Rightarrow AE \parallel DC$ Also, *AD* || *CE* [By construction] AECD is a parallelogram. AD = CE \Rightarrow ...(1) [Opposite sides of a parallelogram] But AD = BC[Given] ...(2) By (1) and (2), we have, BC = CENow, in $\triangle BCE$, we have BC = CE $\Rightarrow \angle CEB = \angle CBE$...(3) [Angles opposite to equal sides of a triangle are equal] Also, $\angle ABC + \angle CBE = 180^{\circ}$ [Linear pair] ...(4) and $\angle A + \angle CEB = 180^{\circ}$...(5) [Interior angles on same side of transversal] From (4) and (5), we get $\angle ABC + \angle CBE = \angle A + \angle CEB$ $\angle ABC = \angle A$ [From (3)] \Rightarrow $\angle B = \angle A$ \Rightarrow ...(6) (ii) $\therefore AB \parallel CD$ and AD is a transversal. $\therefore \ \angle A + \angle D = 180^{\circ}$...(7) [Interior angles on same side of transversal] Similarly, $\angle B + \angle C = 180^{\circ}$...(8) From (7) and (8), we get $\angle A + \angle D = \angle B + \angle C$ $\Rightarrow \angle C = \angle D$ [From (6)] (iii) In $\triangle ABC$ and $\triangle BAD$, we have AB = BA[Common] BC = AD[Given] $\angle ABC = \angle BAD$ [Proved] [By SAS congruence] ·. $\Delta ABC \cong \Delta BAD$ (iv) Since $\triangle ABC \cong \triangle BAD$ [Proved] AC = BD[By C.P.C.T.] · . EXERCISE - 8.2

1. (i) In $\triangle ACD$, we have *S* is the mid-point of *AD* and *R* is the mid-point of *CD*.

$$\therefore SR = \frac{1}{2}AC \text{ and } SR \parallel AC \qquad \dots(1)$$
[By mid-point theorem]

(ii) In $\triangle ABC$,

P is the mid-point of *AB* and *Q* is the mid-point of *BC*.

$$\therefore PQ = \frac{1}{2}AC \text{ and } PQ \parallel AC \qquad \dots (2)$$
[By mid-point theorem]

$$PQ = \frac{1}{2}AC = SR \text{ and } PQ \parallel AC \parallel SR$$

 \Rightarrow PQ = SR and PQ || SR

(iii) In quadrilateral *PQRS*, we have PQ = SR and $PQ \parallel SR$

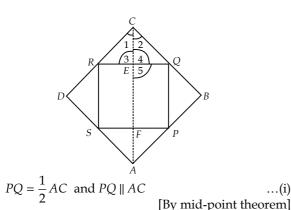
- \therefore *PQRS* is a parallelogram.
- **2.** Join *AC*.

In $\triangle ABC$, *P* and *Q* are the mid-points of *AB* and *BC* respectively.

[Proved]

MtG 100 PERCENT Mathematics Class-9

.: *PQRS* is a parallelogram.



...(i)

In $\triangle ADC$, R and S are the mid-points of CD and DA respectively.

$$\therefore SR = \frac{1}{2}AC \text{ and } SR \parallel AC \qquad \dots \text{(ii)}$$

[By mid-point theorem]

From (i) and (ii), we get

 $PQ = \frac{1}{2}AC = SR$ and $PQ \parallel AC \parallel SR$ $\Rightarrow PQ = SR \text{ and } PQ \parallel SR$ PQRS is a parallelogram. *.*.. ...(iii) Now, in $\triangle ERC$ and $\triangle EQC$,

 $\angle 1 = \angle 2$ [The diagonals of a rhombus bisect the opposite angles]

$$CR = CQ$$

$$CE = EC$$

$$\therefore \Delta ERC \cong \Delta EQC$$

$$\Rightarrow \ \angle 3 = \angle 4$$

$$From (iv) and (v), we get$$

$$(CD = CB \Rightarrow \frac{CD}{2} = \frac{CB}{2}$$

$$[Common]$$

$$By SAS congruence]$$

$$[By C.P.C.T.] \dots (iv)$$

$$[Linear pair] \dots (v)$$

$$\Rightarrow \ \angle 3 = \angle 4 = 90^{\circ}$$

Now, since $PQ \parallel AC$ and EQ is transversal.

 $\angle RQP + \angle 5 = 180^{\circ}$

[Interior angles on the same side of transversal] $\angle RQP = 180^\circ - \angle 5$ \Rightarrow [Vertically opposite angles]

But $\angle 5 = \angle 3$ $\angle 5 = 90^{\circ}$ *.*..

So, $\angle RQP = 180^\circ - \angle 5 = 90^\circ$

One angle of parallelogram *PORS* is 90°. *.*.. Thus, PQRS is a rectangle.

Join AC. 3. In $\triangle ABC$, *P* and *Q* are mid-points of AB and BC respectively.

$$\therefore \quad PQ = \frac{1}{2}AC \text{ and } PQ \parallel AC$$

...(i) [By mid-point theorem]

Similarly, in $\triangle ADC$, we have

 $SR = \frac{1}{2}AC$ and $SR \parallel AC$...(ii) From (i) and (ii), we get PQ = SR and $PQ \parallel SR$

Now, in $\triangle PAS$ and $\triangle PBQ$, we have $\angle A = \angle B$ [Each equals 90°] [: P is the mid-point of AB] AP = BP $\therefore AD = BC \Rightarrow \frac{1}{2}AD = \frac{1}{2}BC$ AS = BQ[By SAS congruence] $\Delta PAS \cong \Delta PBQ$ ÷. PS = PQ[By C.P.C.T.] \Rightarrow Also, PS = QR and PQ = SR. [Opposite sides of a parallelogram] So, PQ = QR = RS = SP*i.e.*, PQRS is a parallelogram having all of its sides equal. Hence, *PQRS* is a rhombus. Let *G* be the point where *EF* intersect diagonal *BD*. 4. In ΔDAB , E is the mid-point of AD and EG || AB $[:: EF \parallel AB]$ G is the mid-point of BD *.*.. [By converse of mid-point theorem] Again in $\triangle BDC$, we have G is the mid-point of BD and GF || DC. $[: AB \parallel DC \text{ and } EF \parallel AB \implies EF \parallel DC]$ *F* is the mid-point of *BC*. [By converse of mid-point theorem] 5. Since, the opposite sides of a parallelogram are parallel and equal. $AB \parallel DC \Rightarrow AE \parallel FC$ (i)

and
$$AB = DC$$

$$\Rightarrow \frac{1}{2}AB = \frac{1}{2}DC \Rightarrow AE = FC \qquad \dots (ii)$$

From (i) and (ii), we have

AECF is a parallelogram. Now, in ΔDQC , we have

F is the mid-point of *DC* and *FP* $\parallel CQ$ $[:: AF \parallel CE]$

... *P* is the mid-point of *DQ*.

[By converse of mid-point theorem] DP = PQ \Rightarrow ...(iii) Similarly, in $\triangle BAP$, *E* is the mid-point of *AB* and *EQ* $\parallel AP$. $[:: AF \parallel CE]$

Q is the mid-point of *BP*. *.*... mid maint thea

$$\Rightarrow BQ = PQ \qquad \qquad \dots (iv)$$

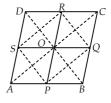
... From (iii) and (iv), we have

DP = PQ = BQ

So, the line segments *AF* and *EC* trisect the diagonal *BD*.

Let ABCD be a guadrilateral and P, Q, R and S be 6. the mid-points of *AB*, *BC*, *CD* and *DA*.

Join PQ, QR, RS and SP. Let us also join PR and SQ.



÷.

Now, in $\triangle ABC$, *P* and *Q* are the mid-points of *AB* and *BC* respectively.

$$\therefore PQ \parallel AC \text{ and } PQ = \frac{1}{2}AC \qquad \dots \text{(i)}$$

[By mid-point theorem]

Similarly, $RS \parallel AC$ and $RS = \frac{1}{2}AC$...(ii) By (i) and (ii), we get

 $PQ \parallel RS$ and PQ = RS

PQRS is a parallelogram.

Since, the diagonals of a parallelogram bisect each other, *i.e.*, *PR* and *SQ* bisect each other.

Thus, the line segments joining the mid-points of opposite sides of a quadrilateral bisect each other.

7. (i) In $\triangle ACB$,

....

M is the mid-point of AB.[Given] $MD \parallel BC$ [Given]

 \therefore *D* is the mid-point of *AC*.

[By converse of mid-point theorem]

- (ii) Since, $MD \parallel BC$ and AC is a transversal.
- $\therefore \ \angle MDA = \angle BCA \qquad [Corresponding angles] \\But \ \angle BCA = 90^{\circ} \qquad [Given] \\$

 $\therefore \ \angle MDA = 90^{\circ}$

- $\Rightarrow MD \perp AC.$
- (iii) In $\triangle ADM$ and $\triangle CDM$, we have $\angle ADM = \angle CDM$ [Ea
- $\angle ADM = \angle CDM \qquad [Each equals 90^{\circ}]$ $MD = DM \qquad [Common]$ $AD = CD \qquad [\because D \text{ is the mid-point of } AC]$ $\therefore \ \Delta ADM \cong \Delta CDM \qquad [By SAS congruence]$ $\Rightarrow MA = MC \qquad [By C.P.C.T.] \dots (i)$

Now, since *M* is the mid-point of *AB*.

$$\therefore MA = \frac{1}{2}AB \qquad \dots (ii)$$

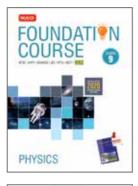
From (i) and (ii), we have

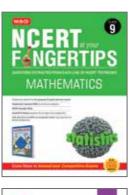
$$CM = MA = \frac{1}{2}AB$$

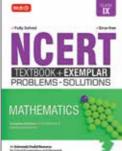
D

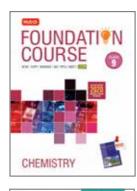
[Given]

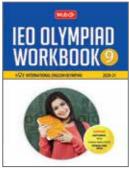
mtg BEST SELLING BOOKS FOR CLASS 9

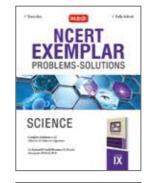


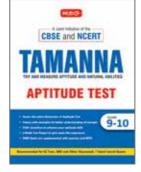


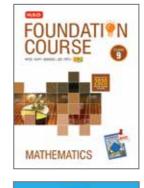


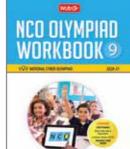


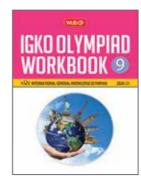


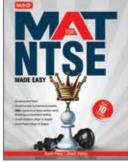


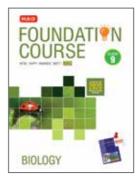




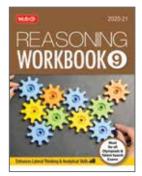












Visit www.mtg.in for complete information