Areas of Parallelograms and Triangles

NCERT FOCUS

SOLUTIONS

The figures (i), (iii) and (v) lie on the same base and 1. between the same parallels.

	Common base	Two parallels
Fig. (i)	DC	DC and AB
Fig. (iii)	QR	QR and PS
Fig. (v)	AD	AD and BQ

EXERCISE - 9.2

- 1. We have, AB = 16 cm
- • AB = CD[Opposite sides of parallelogram] CD = 16 cm÷.,

Now, area of parallelogram $ABCD = CD \times AE$

 $= (16 \times 8) \text{ cm}^2 = 128 \text{ cm}^2$

Since, $CF \perp AD$

- Area of parallelogram $ABCD = AD \times CF$ *.*..
- $AD \times CF = 128 \Rightarrow AD \times 10 = 128$ [:: CF = 10 cm] \Rightarrow \Rightarrow
- $AD = \frac{128}{10} = 12.8$

Thus, the required length of AD is 12.8 cm.

Join *GE* and *HF*, then *GE* || *BC* || *DA* 2.

- and *HF* || *AB* || *DC*.
- $AB = DC \Rightarrow AE = DG$ •.•
- and AB || CD
- \Rightarrow AE || DG.

Thus, AEGD is a parallelogram.

Similarly, *ABFH*, *DCFH* and *EBCG* are parallelograms.

We know that, if a triangle and a parallelogram are on the same base and betwe<mark>en</mark> the same parallels, then the area of the triangle is equal to half the area of the parallelogram.

Now, ΔEFG and parallelogram EBCG are on the same base EG and between the same parallels EG and BC.

$$\therefore \quad ar(\Delta EFG) = \frac{1}{2}ar(||^{gm} EBCG) \qquad \dots (i)$$

Similarly, $ar(\Delta EHG) = \frac{1}{2}ar(||^{gm} AEGD)$

Adding (i) and (ii), we get

$$ar(\Delta EFG) + ar(\Delta EHG) = \frac{1}{2} [ar(||^{gm}EBCG) + ar(||^{gm}AEGD)]$$

$$\Rightarrow ar(EFGH) = \frac{1}{2} ar(||^{gm}ABCD)$$

Hence proved.

Since, $\triangle APB$ and parallelogram ABCD are on the 3. same base *AB* and between the same parallels *AB* and *CD*.

$$\therefore \quad ar(\Delta APB) = \frac{1}{2}ar(\|^{gm} ABCD) \qquad \dots (i)$$

Also, ΔBQC and parallelogram ABCD are on the same base BC and between the same parallels *BC* and *AD*.

...(ii)

$$\therefore \quad ar(\Delta BQC) = \frac{1}{2}ar(||^{gm} ABCD)$$

 $ar(\Delta APB) = ar(\Delta BQC).$

Hence proved.

4. We have a parallelogram *ABCD, i.e., AB* || *CD* and *BC* || *AD*. Let us draw *EF* || *AB* and *HG* || *AD* through P.

$$A \xrightarrow{H} F$$

Clearly, AEFB, CDEF, ADGH and BCGH, all are parallelograms.

Since, $\triangle APB$ and parallelogram *AEFB* are on the (i) same base AB and between the same parallels AB and EF.

$$\therefore \quad ar(\Delta APB) = \frac{1}{2}ar(\parallel^{\text{gm}} AEFB) \qquad \dots (1)$$

Also, $\triangle PCD$ and parallelogram CDEF are on the same base CD and between the same parallels CD and EF.

$$\therefore \quad ar(\Delta PCD) = \frac{1}{2}ar(\|^{gm} CDEF) \qquad \dots (2)$$

Adding (1) and (2), we get

$$ar(\Delta APB) + ar(\Delta PCD) = \frac{1}{2}ar(||^{gm} AEFB) + \frac{1}{2}ar(||^{gm} CDEF)$$

$$\Rightarrow ar(\Delta APB) + ar(\Delta PCD) = \frac{1}{2}ar(||^{gm} ABCD) \qquad ...(3)$$

(ii) $\triangle APD$ and parallelogram ADGH are on the same base *AD* and between the same parallels *AD* and *GH*.

$$\therefore \quad ar(\Delta APD) = \frac{1}{2}ar(\|^{gm} ADGH) \qquad \dots (4)$$

Similarly,
$$ar(\Delta PBC) = \frac{1}{2}ar(\parallel^{\text{gm}} BCGH)$$
 ...(5)

Adding (4) and (5), we get

$$ar(\Delta APD) + ar(\Delta PBC) =$$

 $\frac{1}{2}ar(\parallel^{\text{gm}} ADGH) + \frac{1}{2}ar(\parallel^{\text{gm}} BCGH)$

$$\Rightarrow ar(\Delta APD) + ar(\Delta PBC) = \frac{1}{2}ar(||^{gm} ABCD) \qquad \dots (6)$$

From (3) and (6), we get $ar(\Delta APD) + ar(\Delta PBC) = ar(\Delta APB) + ar(\Delta PCD)$

... (ii)

MtG 100 PERCENT Mathematics Class-9

5. (i) Parallelogram *PQRS* and parallelogram *ABRS* are on the same base *RS* and between the same parallels *RS* and *PB*.

 $\therefore \quad ar(||^{gm}PQRS) = ar(||^{gm}ABRS)$

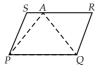
(ii) $\triangle AXS$ and parallelogram *ABRS* are on the same base *AS* and between the same parallels *AS* and *BR*.

$$\therefore \quad ar(\Delta AXS) = \frac{1}{2} \quad ar(||^{gm} ABRS) \qquad \dots (1)$$

But $ar(||^{gm} PQRS) = ar(||^{gm} ABRS)$ [Proved in (i) part] ...(2)

 \therefore From (1) and (2), we get $ar(\Delta AXS) = \frac{1}{2}ar(PQRS)$

6. Given, the farmer is having a field in the form of parallelogram PQRS and a point *A* is situated on *RS*. Join *AP* and *AQ*.



Clearly, the field is divided into three AABC ABAC and ACAB

parts *i.e.*, ΔAPS , ΔPAQ and ΔQAR .

Now, as $\triangle PAQ$ and parallelogram *PQRS* are on the same base *PQ* and between the same parallels *PQ* and *RS*.

$$\therefore \quad ar(\Delta PAQ) = \frac{1}{2} ar(\parallel^{\text{gm}} PQRS) \qquad \dots(i)$$

Now, $ar(||^{gm} PQRS) - ar(\Delta PAQ)$

$$= ar(||gm PQRS) - \frac{1}{2} ar(||gm PQRS)$$
[From (i)]

$$\Rightarrow ar(\Delta APS) + ar(\Delta QAR) = \frac{1}{2} ar(||^{gm} PQRS) \dots (ii)$$

From (i) and (ii), we have

 $ar(\Delta PAQ) = ar[(\Delta APS) + (\Delta QAR)]$

Thus, the farmer can sow wheat in $\triangle PAQ$ and pulses in $\triangle APS$ and $\triangle QAR$ or wheat in $\triangle APS$ and $\triangle QAR$ and pulses in $\triangle PAQ$.

1. In $\triangle ABC$, AD is a median.

 $\therefore \quad ar(\Delta ABD) = ar(\Delta ADC)$

[: A median divides the triangle into two triangles of equal area]

Similarly, in $\triangle BEC$, we have $ar(\triangle BED) = ar(\triangle DEC)$...(ii) Subtracting (ii) from (i), we get

 $ar(\Delta ABD) - ar(\Delta BED) = ar(\Delta ADC) - ar(\Delta DEC)$ $\Rightarrow ar(\Delta ABE) = ar(\Delta ACE).$

2. In a $\triangle ABC$, *AD* is a median. Since, a median divides the triangle into two triangles of equal area.

$$\therefore ar(\Delta ABD) = \frac{1}{2}ar(\Delta ABC) \qquad \dots (i)$$

Join *B* and *E*.

Now, in $\triangle ABD$, *BE* is a median.

[::
$$E$$
 is the mid-point of AD]

$$\therefore \quad ar(\Delta BED) = \frac{1}{2}ar(\Delta ABD) \qquad \dots (ii)$$

From (i) and (ii), we get

$$ar(\Delta BED) = \frac{1}{2} \left[\frac{1}{2} ar(\Delta ABC) \right]$$

 $\Rightarrow ar(\Delta BED) = \frac{1}{4}ar(\Delta ABC)$

3. Let *ABCD* be a parallelogram such that its diagonals intersect at *O*.

: Diagonals of a parallelogram bisect each other.

 \therefore AO = OC and BO = OD Since, a median of a triangle divides it into two triangles of equal area.

 $\therefore ar(\Delta BOC) = ar(\Delta DOC)$ Similarly, $ar(\Delta AOD) = ar(\Delta DOC)$ and $ar(\Delta AOB) = ar(\Delta BOC)$

From (i), (ii) and (iii), we get

 $ar(\Delta AOB) = ar(\Delta BOC) = ar(\Delta COD) = ar(\Delta AOD)$

Thus, the diagonals of a parallelogram divide it into four triangles of equal area.

4. We have, $\triangle ABC$ and $\triangle ABD$ are on the same base AB. \therefore CD is bisected at O. [Given]

:..

2

...(i)

Since, a median of a triangle divides it into two triangles of equal area.

$$ar(\Delta OAC) = ar(\Delta OAD) \qquad \dots (i)$$

Similarly,
$$ar(\Delta OBC) = ar(\Delta OBD)$$
 ...(ii)

Adding (i) and (ii), we get

 $ar(\Delta OAC) + ar(\Delta OBC) = ar(\Delta OAD) + ar(\Delta OBD)$

 $\Rightarrow ar(\Delta ABC) = ar(\Delta ABD)$

5. We have, $\triangle ABC$ such that *D*, *E* and *F* are the mid-points of *BC*, *CA* and *AB* respectively.

...(i)

...(ii)

...(iii)

(i) In $\triangle ABC$, *E* and *F* are the midpoints of *AC* and *AB* respectively.

 $EF \parallel BC$ and $EF = \frac{1}{2}BC$ [E

[By mid-point theorem]

⇒ $EF \parallel BD$ and EF = BD [: D is the mid-point of BC] Now, BDEF is a quadrilateral whose one pair of opposite sides is parallel and of equal lengths.

 \therefore *BDEF* is a parallelogram.

(ii) We have proved that *BDEF* is a parallelogram.

Similarly, *DCEF* is a parallelogram and *DEAF* is a parallelogram.

Now, as diagonal of a parallelogram divides it into two triangles of equal area

$$ar(\Delta BDF) = ar(\Delta DEF) \qquad \dots (1)$$

Similarly,
$$ar(\Delta CDE) = ar(\Delta DEF)$$
 ...(2)

and
$$ar(\Delta AEF) = ar(\Delta DEF)$$
 ...(3)

From (1), (2) and (3), we have $ar(\Delta AEF) = ar(\Delta FBD) = ar(\Delta CDE) = ar(\Delta DEF)$

Thus, $ar(\Delta ABC) = ar(\Delta AEF) + ar(\Delta FBD)$

$$+ ar(\Delta DEF) + ar(\Delta CDE) = 4 ar(\Delta DEF)$$

$$\Rightarrow ar(\Delta DEF) = \frac{1}{4}ar(\Delta ABC)$$

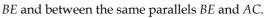
(iii) We have, $ar(\parallel^{\text{gm}} BDEF) = ar(\Delta BDF) + ar(\Delta DEF)$ $= ar(\Delta DEF) + ar(\Delta DEF)$ [:: $ar(\Delta DEF) = ar(\Delta BDF)$] $= 2ar(\Delta DEF)$ $=2\left[\frac{1}{4}ar(\Delta ABC)\right] = \frac{1}{2}ar(\Delta ABC)$ Thus, $ar(||^{gm} BDEF) = \frac{1}{2}ar(\Delta ABC)$. 6. We have a quadrilateral ABCD whose diagonals AC and BD intersect at O such that OB = OD. Also, we have AB = CDLet us draw $DE \perp AC$ and $BF \perp AC$. (i) In $\triangle DEO$ and $\triangle BFO$, we have DO = BO[Given] [Vertically opposite angles] $\angle DOE = \angle BOF$ $\angle DEO = \angle BFO$ [Each 90°] $\Delta DEO \cong \Delta BFO$ [By AAS congruency criterion] DE = BF[By CPCT] \Rightarrow and $ar(\Delta DEO) = ar(\Delta BFO)$...(1) Now, in $\triangle DEC$ and $\triangle BFA$, we have $\angle DEC = \angle BFA$ [Each 90°] DE = BF[Proved above] DC = BA[Given] $\Delta DEC \cong \Delta BFA$ [By RHS congruency criterion] $ar(\Delta DEC) = ar(\Delta BFA)$ \Rightarrow ...(2) [By CPCT] ...(3) and $\angle 1 = \angle 2$ *.*.. Adding (1) and (2), we get $ar(\Delta DEO) + ar(\Delta DEC) = ar(\Delta BFO) + ar(\Delta BFA)$ $ar(\Delta DOC) = ar(\Delta AOB)$ \Rightarrow (ii) Since, $ar(\Delta DOC) = ar(\Delta AOB)$ [Proved above] Adding $ar(\Delta BOC)$ on both sides, we get $ar(\Delta DOC) + ar(\Delta BOC) = ar(\Delta AOB) + ar(\Delta BOC)$ $\Rightarrow ar(\Delta DCB) = ar(\Delta ACB)$ (iii) Since, $\triangle DCB$ and $\triangle ACB$ are on the same base CB and having equal areas. They must lie between the same parallels. *.*.. \Rightarrow CB || DA Also, $\angle 1 = \angle 2$, [From (3)] which form a pair of alternate interior angles. So, $AB \parallel CD$ Hence, *ABCD* is a parallelogram. We have, a $\triangle ABC$ and points D 7. and E on AB and AC respectively are such that $ar(\Delta DBC) = ar(\Delta EBC)$. Since, ΔDBC and ΔEBC are on the same base *BC* and having same area. They must lie between the same *.*.. parallels. Hence, $DE \parallel BC$ Hence proved.

8. We have, a $\triangle ABC$ such that $XY \parallel BC$, $BE \parallel AC$ and $CF \parallel AB$.

Since, $XY \parallel BC$ and $BE \parallel CY$.

 \therefore BCYE is a parallelogram.

Now, the parallelogram *BCYE* and $\triangle ABE$ are on the same base



$$\therefore \quad ar(\Delta ABE) = \frac{1}{2} ar (\parallel^{\text{gm}} BCYE) \qquad \dots(i)$$

Again, $XY \parallel BC$ and $CF \parallel AB$ [Given]

 \Rightarrow XF || BC and CF || XB

 \therefore *BCFX* is a parallelogram.

Now, $\triangle ACF$ and parallelogram *BCFX* are on the same base *CF* and between the same parallels *AB* and *FC*.

$$\therefore \quad ar(\Delta ACF) = \frac{1}{2}ar(\|^{gm} BCFX) \qquad \dots (ii)$$

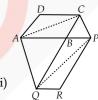
Also parallelogram *BCFX* and parallelogram *BCYE* are on the same base *BC* and between the same parallels *BC* and *EF*.

$$\therefore ar(||^{gm} BCFX) = ar(||^{gm} BCYE) \qquad \dots (iii)$$

From (i), (ii) and (iii), we get
 $ar(\Delta ABE) = ar(\Delta ACF)$

9. Join AC and PQ.

We know that diagonal of a parallelogram divides it into two triangles of equal area.



$$\therefore ar(\Delta ABC) = \frac{1}{2}ar(||^{gm} ABCD) \dots (i$$

[: ABCD is a parallelogram and AC is its diagonal.]

Again, *PBQR* is a parallelogram and *QP* is its diagonal.

$$ar(\Delta BPQ) = \frac{1}{2}ar(\parallel^{\text{gm}} PBQR) \qquad \dots (\text{ii})$$

Since, $\triangle ACQ$ and $\triangle APQ$ are on the same base AQ and between the same parallels AQ and CP.

$$\Rightarrow ar(\Delta ACQ) = ar(\Delta APQ)$$

$$\Rightarrow ar(\Delta ACQ) - ar(\Delta ABQ) = ar(\Delta APQ) - ar(\Delta ABQ)$$

[Subtracting $ar(\Delta ABQ)$ from both sides]

 $\Rightarrow ar(\Delta ABC) = ar(\Delta BPQ)$

From (i), (ii) and (iii), we get

$$\frac{-ar(\|B^{m} ABCD) = -ar(\|B^{m} PBQR)}{2}$$

$$\Rightarrow ar(\|B^{m} ABCD) = ar(\|B^{m} PBQR)$$

10. We have, a trapezium *ABCD* with *AB* \parallel *CD* and its diagonals *AC* and *BD* intersect at *O*.

Since, triangles on the same base and between the same parallels have equal areas and here $\triangle ABD$ and $\triangle ABC$ are on the same base AB and between the same parallels AB and DC.

 $\therefore \quad ar(\Delta ABD) = ar(\Delta ABC)$

Subtracting $ar(\Delta AOB)$ from both sides, we get

$$ar(\Delta ABD) - ar(\Delta AOB) = ar(\Delta ABC) - ar(\Delta AOB)$$

 $\Rightarrow ar(\Delta AOD) = ar(\Delta BOC)$

11. We have, a pentagon *ABCDE* and a line *BF* such that $BF \parallel AC$ and intersect *DC* produced at *F*.

(i) Since, the triangles between the same parallels and on the same base are equal in area and here $\triangle ACB$ and $\triangle ACF$ are on the same base *AC* and between the same parallels *AC* and *BF*.

 $\therefore \quad ar(\Delta ACB) = ar(\Delta ACF)$

...(iii)

MtG 100 PERCENT Mathematics Class-9

(ii) Since, $ar(\Delta ACB) = ar(\Delta ACF)$ [Proved above] Adding ar(quad. AEDC) on both sides, we get $ar(\Delta ACB) + ar(\text{quad. } AEDC) = ar(\Delta ACF) + ar(\text{quad. } AEDC)$

 $\therefore ar(ABCDE) = ar(AEDE)$

12. Let the plot be in the form of a quadrilateral *ABCD*. Join *AC*.

Draw $DF \parallel AC$ such that it meets BC produced at F and join A and F.

Now, ΔDAF and ΔDCF are on the same base *DF* and between the same parallels *AC* and *DF*.

 $\therefore \quad ar(\Delta DAF) = ar(\Delta DCF)$

Subtracting $ar(\Delta DEF)$ from both sides, we get $ar(\Delta DAF) - ar(\Delta DEF) = ar(\Delta DCF) - ar(\Delta DEF)$ $\Rightarrow ar(\Delta ADE) = ar(\Delta CEF)$

 $\Rightarrow ar(\Delta ADE) = ar(\Delta CEF)$ Thus, the portion of $\triangle ADE$ can

Thus, the portion of $\triangle ADE$ can be taken over by the Gram Panchyat by adding the land ($\triangle CEF$) to his (Itwaari) land so as to form a triangular plot *i.e.*, $\triangle ABF$.

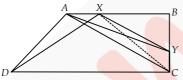
Note that $ar(\Delta ABF) = ar(\text{quad. }ABCD)$.

[∴ $ar(\Delta CEF) = ar(\Delta ADE)$ [Proved above] ∴ Adding ar(quad. ABCE) on both sides, we get $ar(\Delta CEF) + ar(quad. ABCE)$

$$= ar(\Delta ADE) + ar (quad. ABCE)$$

 \Rightarrow ar($\triangle ABF$) = ar (quad. ABCD)]

13. We have, a trapezium *ABCD* with *AB* \parallel *DC* and a line *XY* such that *XY* \parallel *AC* meets *AB* at *X* and *BC* at *Y*. Join *CX*.



 \therefore $\triangle ADX$ and $\triangle ACX$ are on the same base AX and between the same parallels AB and DC.

 $\therefore \quad ar(\Delta ADX) = ar(\Delta ACX) \qquad \dots (i)$

 \therefore $\triangle ACX$ and $\triangle ACY$ are on the same base AC and between the same parallels AC and XY.

 $\therefore ar(\Delta ACX) = ar(\Delta ACY) \qquad ...(ii)$ From (i) and (ii), we have $ar(\Delta ADX) = ar(\Delta ACY)$ Hence proved.

14. We have, *AP* || *BQ* || *CR*.

 \therefore ΔBCQ and ΔBQR are on the same base BQ and between the same parallels BQ and CR.

 $\therefore ar(\Delta BCQ) = ar(\Delta BQR) \qquad ...(i)$ Similarly, ΔABQ and ΔPBQ are on the same base BQ and between the same parallels AP and BQ.

 $\therefore ar(\Delta ABQ) = ar(\Delta PBQ) \qquad ...(ii)$ Adding (i) and (ii), we get $ar(\Delta BCQ) + ar(\Delta ABQ) = ar(\Delta BQR) + ar(\Delta PBQ)$ $\Rightarrow ar(\Delta AQC) = ar(\Delta PBR)$ Hence proved.

15. We have, a quadrilateral *ABCD* and its diagonals *AC* and *BD* intersect at *O* such that $ar(\Delta AOD) = ar(\Delta BOC)$

Adding $ar(\Delta AOB)$ on both sides, we get $ar(\Delta AOD) + ar(\Delta AOB) = ar(\Delta BOC) + ar(\Delta AOB)$

 $\Rightarrow ar(\Delta ABD) = ar(\Delta ABC)$

Also, they lie on the same base *AB*.

 \therefore They must lie between the same parallels.

 $\therefore AB \parallel DC$

Now, *ABCD* is a quadrilateral having a pair of opposite sides parallel. So, *ABCD* is a trapezium. Hence proved.

16. We have, $ar(\Delta DRC) = ar(\Delta DPC)$ [Given] Also, they lie on the same base *DC*.

 \therefore ΔDRC and ΔDPC must lie between the same parallels.

So, $DC \parallel RP$. Thus, a pair of opposite sides of quadrilateral DCPR is parallel.

...(i)

...(ii)

 \therefore Quadrilateral *DCPR* is a trapezium.

Again, we have

 $ar(\Delta BDP) = ar(\Delta ARC)$

Also, we have $ar(\Delta DPC) = ar(\Delta DRC)$

Subtracting (ii) from (i), we get

 $ar (\Delta BDP) - ar (\Delta DPC) = ar (\Delta ARC) - ar (\Delta DRC)$

 $\Rightarrow ar(\Delta BDC) = ar(\Delta ADC)$

Also, they lie on the same base DC.

We have a parallelogram

 \therefore ΔBDC and ΔADC must lie between the same parallels.

So, $AB \parallel DC$ and hence quadrilateral ABCD is a trapezium.

ABCD and a rectangle ABEF
such that

$$ar(||_{g^{m}} ABCD) = ar(rect. ABEF)$$

Now, $AB = CD$
[Opposite sides of parallelogram]
and $AB = EF$
 $\Rightarrow CD = EF$
 $\Rightarrow AB + CD = AB + EF$
 $(D) = AB + EF$
 $(AB + BC + CD + DA) > (AB + EF) + (BE + AF)$
 $(AB + BC + CD + DA) > (AB + BE + EF + FA)$
 $(AB + BC + CD + DA) > (AB + BE + EF + FA)$
 $(AB + BC + CD + DA) > (AB + BE + EF + FA)$
 $(D) = Perimeter of rectangle ABEF$
2. Draw AF perpendicular to BC.
Then, AF will be the height of $\triangle ABD$, $\triangle ADE$ and $\triangle AEC$.
Area of a triangle $= \frac{1}{2} \times BD \times AF$
Similarly, $ar(\triangle ADE) = \frac{1}{2} \times DE \times AF$ and B
 D
 F
 (D)
 (D)
 E
 (D)
 (D)

Since, BD = DE = EC $\left(\frac{1}{2} \times BD \times AF\right) = \left(\frac{1}{2} \times DE \times AF\right) = \left(\frac{1}{2} \times EC \times AF\right)$ $ar(\Delta ABD) = ar(\Delta ADE) = ar(\Delta AEC).$ \Rightarrow

We have, parallelograms ABCD, DCFE and ABFE. 3. Since, opposite sides of parallelogram are equal.

$$\therefore AD = BC, DE = CF \text{ and } AE = BF \qquad \dots(i)$$

In $\triangle ADE$ and $\triangle BCF$, we have

- AD = BC, DE = CF and AE = BF(From (i))
- $\Delta ADE \cong \Delta BCF$ (By SSS congruence criterion) $ar(\Delta ADE) = ar(\Delta BCF)$ \Rightarrow

We have, a parallelogram ABCD and AD = CQ. 4. Let us join AC.

We know that triangles on the same base and between the same parallels are equal in area. Since $\triangle QAC$ and $\triangle QDC$ are on the same base QC and between the same parallels AD and BQ.

.. $ar(\Delta QAC) = ar(\Delta QDC)$

Subtracting $ar(\Delta QPC)$ from both sides, we get $ar(\Delta QAC) - ar(\Delta QPC) = ar(\Delta QDC) - ar(\Delta QPC)$ $\Rightarrow ar(\Delta PAC) = ar(\Delta QDP)$...(i) Since, $\triangle PAC$ and $\triangle PBC$ are on the same base PC and between the same parallels AB and CD

 $ar(\Delta PAC) = ar(\Delta PBC)$...(ii) From (i) and (ii), we get $ar(\Delta PBC) = ar(\Delta QDP)$

Join *EC* and *AD*. Draw *EP* \perp *BC*. 5.

Let
$$AB = BC = CA = a$$
, then $BD = DE = BE = \frac{a}{2}$.

(i) Clearly,
$$ar(\Delta ABC) = \frac{1}{4}a^2$$
 and
 $ar(\Delta BDE) = \frac{\sqrt{3}}{4}\left(\frac{a}{2}\right)^2 = \frac{\sqrt{3}}{16}a^2$
 $\Rightarrow ar(\Delta BDE) = \frac{1}{4}ar(\Delta ABC)$

(ii) Since, $\triangle ABC$ and $\triangle BED$ are equilateral triangles.

 $\angle ACB = \angle DBE = 60^{\circ}$

 \Rightarrow BE || AC [: A pair of alternate interior angles is equal.] Now, as $\triangle BAE$ and $\triangle BEC$ are on the same base BE and between the same parallels *BE* and *AC*.

$$\therefore \quad ar(\Delta BAE) = ar(\Delta BEC)$$

$$\Rightarrow ar(\Delta BAE) = 2 ar(\Delta BDE)$$

[:: *DE* is median of $\triangle BEC$:: *ar* ($\triangle BEC$) = 2 *ar*($\triangle BDE$)]

$$\Rightarrow ar(\Delta BDE) = \frac{1}{2}ar(\Delta BAE)$$

(iii) Since, $ar(\Delta ABC) = 4 ar(\Delta BDE)$ [Proved in (i) part] $ar(\Delta BEC) = 2 ar(\Delta BDE)$ [:: *DE* is median of $\triangle BEC$] $\Rightarrow ar(\Delta ABC) = 2 ar(\Delta BEC)$

- (iv) Since $\triangle ABC$ and $\triangle BDE$ are equilateral triangles.
- $\angle ABC = \angle BDE = 60^{\circ}$ ÷.,
- $AB \parallel DE$ \Rightarrow

[\therefore A pair of alternate interior angles is equal]

Now, as $\triangle BED$ and $\triangle AED$ are on the same base ED and between same parallels *AB* and *DE*.

$$\therefore ar(\Delta BED) = ar(\Delta AED)$$

Subtracting $ar(\Delta EFD)$ from both sides, we get $ar(\Delta EFD)$

$$\Rightarrow ar(\Delta BED) - ar(\Delta EFD) = ar(\Delta AED) - (\Delta AED) = ar(\Delta AED) - (\Delta AED) = ar(\Delta A$$

 $ar(\Delta BFE) = ar(\Delta AFD)$ \Rightarrow

(v) Since, ABC is an equilateral triangle, therefore AD will be perpendicular to *BC* also.

In right angled
$$\triangle ABD$$
, we have $AD^2 = AB^2 - BD^2$

$$\Rightarrow AD^{2} = a^{2} - \frac{u}{4} = \frac{4u - u}{4} = \frac{5u}{4} \Rightarrow AD = \frac{\sqrt{5u}}{2}$$

In right angled $\triangle PED$, $EP^{2} = DE^{2} - DP^{2}$
$$\Rightarrow EP^{2} = \left(\frac{a}{2}\right)^{2} - \left(\frac{a}{2}\right)^{2} = \frac{a^{2}}{2} - \frac{a^{2}}{2} = \frac{3a^{2}}{2} \Rightarrow EP = \frac{\sqrt{3a}}{2}$$

$$\therefore ar(\Delta AFD) = \frac{1}{2} \times FD \times AD = \frac{1}{2} \times FD \times \frac{\sqrt{3}}{2}a \qquad \dots(1)$$

and
$$ar(\Delta EFD) = \frac{1}{2} \times FD \times EP = \frac{1}{2} \times FD \times \frac{\sqrt{3}}{4}a$$
 ...(2)

From (1) and (2), we get $ar(\Delta AFD) = 2 ar(\Delta FED)$ Also, we have $ar(\Delta AFD) = ar(\Delta BFE)$

...(i)

$$\Rightarrow ar(\Delta BFE) = 2 ar(\Delta FED)$$

(vi)
$$ar(\Delta AFC) = ar(\Delta AFD) + ar(\Delta ADC)$$

 $= ar(\Delta BFE) + \frac{1}{2}ar(\Delta ABC)$ [From (iv) part and *DE* is the median of ΔABC]

$$= ar(\Delta BFE) + \frac{1}{2} \times 4 \times ar(\Delta BDE)$$
 [From (i) part]
= $ar(\Delta BFE) + 2ar(\Delta BDE)$

$$= 2ar(\Delta FED) + 2[ar(\Delta BFE) + ar(\Delta FED)]$$
[From (v) part]

$$2ar(\Delta FED) + 2[2ar(\Delta FED) + ar(\Delta FED)]$$
 [From (v) part]

 $= 2ar(\Delta FED) + 2[3ar(\Delta FED)]$ $= 2ar(\Delta FED) + 6ar(\Delta FED) = 8ar(\Delta FED)$

$$\therefore \quad \frac{1}{-} ar(\Delta AFC) = ar(\Delta FED)$$

We have a quadrilateral 6. ABCD such that its diagonals AC and BD intersect at P. Draw $AM \perp BD$ and $CN \perp BD$.

Now,
$$ar(\Delta APB) = \frac{1}{2} \times BP \times AM^{-4}$$

and $ar(\Delta CPD) = \frac{1}{2} \times DP \times CN$

$$ar(\Delta APB) \times ar(\Delta CPD) = \left(\frac{1}{2} \times BP \times AM\right) \times \left(\frac{1}{2} \times DP \times CN\right)$$

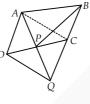
$$= \frac{1}{4} \times BP \times DP \times AM \times CN$$

Similarly, $ar(APD) \times ar(APPC)$

$$= \left(\frac{1}{2} \times DP \times AM\right) \times \left(\frac{1}{2} \times BP \times CN\right)$$
$$= \frac{1}{4} \times BP \times DP \times AM \times CN \qquad \dots (ii)$$

From (i) and (ii), we get

 $ar(\Delta APB) \times ar(\Delta CPD) = ar(\Delta APD) \times ar(\Delta BPC)$



MtG 100 PERCENT Mathematics Class-9

7. We have, a
$$\triangle ABC$$
 such that P
is the mid-point of AB and Q is the
mid-point of BC .
Also, R is the mid-point of AP .
Join AQ and PC .
(i) In $\triangle APQ$, R is the mid-point of AP . [Given]
 \therefore RQ is a median of $\triangle APQ$.
So, $ar(\triangle PRQ) = \frac{1}{2}ar(\triangle APQ)$...(1)
In $\triangle ABQ$, P is the mid-point of AB .
 \therefore QP is a median of $\triangle BQ$.
So, $ar(\triangle APQ) = \frac{1}{2}ar(\triangle ABQ)$...(2)
From (1) and (2), we get
 $ar(\triangle PRQ) = \frac{1}{2} \times \frac{1}{2}ar(\triangle ABQ)$
 $= \frac{1}{4}ar(\triangle ABQ) = \frac{1}{4} \times \frac{1}{2}ar(\triangle ABC)$
 $[: AQ \text{ is a median of } \triangle ABC]$
 $= \frac{1}{8}ar(\triangle ABC)$...(3)
Now, $ar(\triangle ARC) = \frac{1}{2}ar(\triangle APC)$
 $[: CR \text{ is a median of } \triangle ABC]$
 $= \frac{1}{4}(ar \triangle ABC)$ [: CP is a median of $\triangle ABC]$
 $= \frac{1}{4}(ar \triangle ABC)$...(4)
From (3) and (4), we get
 $ar(\triangle PRQ) = \frac{1}{2}ar(\triangle ABC) = \frac{1}{2}\times (\frac{1}{4}ar \triangle ABC) = \frac{1}{2}ar(\triangle ARC)$
Thus, $ar(\triangle PRQ) = \frac{1}{2}ar(\triangle ARC)$
(ii) In $\triangle RBC$, RQ is a median.
 \therefore $ar(\triangle RQC) = ar(\triangle RBQ) = ar(\triangle PRQ) + ar(\triangle BPQ)$
 $= \frac{1}{8}ar(\triangle ABC) + ar(\triangle BPQ)$ [From (3)]
 $= \frac{1}{8}ar(\triangle ABC) + \frac{1}{2}ar(\triangle ABC)$
 $[: PQ$ is the median of $\triangle ABC$]
 $= \frac{1}{8}ar(\triangle ABC) + \frac{1}{2}ar(\triangle ABC)$
 $[: CP$ is the median of $\triangle ABC$]
 $= \frac{1}{8}ar(\triangle ABC) + \frac{1}{2}ar(\triangle ABC)$
 $[: CP$ is the median of $\triangle ABC$]
 $= \frac{1}{8}ar(\triangle ABC) + \frac{1}{4}ar(\triangle ABC)$
 $= (\frac{1}{8} + \frac{1}{4})ar(\triangle ABC) = \frac{3}{8}ar(\triangle ABC)$
(iii) QP is a median of $\triangle ABQ$.
 \therefore $ar(\triangle PBQ) = \frac{1}{2}(\triangle ABQ) = \frac{1}{2}\times \frac{1}{2}ar(\triangle ABC)$
 $[: AQ$ is the median of $\triangle ABC$]

Thus, $ar(\Delta PBQ) = ar(\Delta ARC)$

 $=\frac{1}{4}ar(\Delta ABC) = ar(\Delta ARC)$

[From (4)]

8. We have, a right $\triangle ABC$ such that *BCED*, *ACFG* and ABMN are squares on its sides *BC*, *CA* and *AB* respectively. Also, line segment $AX \perp DE$ is drawn such that it meets

Also, time segment
$$AX \perp DE$$
 is drawn such that it meets
 BC at Y.
(i) In ΔABD and ΔMBC , we have
 $AB = MB$
 $BD = BC$ [Sides of a square]
 $BD = BC$ [Each 90°]
 $\Rightarrow \angle CBD + \angle ABC = \angle MBA + \angle ABC$
[By adding $\angle ABC$ on both sides]
 $\Rightarrow \angle ABD = \angle MBC$ [By SAS congruency criterion]
(ii) Since, $AX \perp DE$ therefore $AX \parallel BD$ and $AX \parallel CE$.
Thus, $BYXD$ and $CYXE$ both are parallelograms.
Now, as parallelogram $BYXD$ and ΔABD are on
the same base BD and between the same parallels
 BD and AX .
 $\therefore ar(\Delta ABD) = \frac{1}{2} ar(\parallel^{gm} BYXD)$
But $ar(\Delta ABD) = ar(\Delta MBC)$
[Congruent triangles have equal areas]
 $\Rightarrow ar((\Delta MBC) = \frac{1}{2}ar(\parallel^{gm} BYXD)$
 $\Rightarrow ar(\parallel^{gm} BYXD) = 2ar(\Delta MBC)$
(iii) Since, $ar(BYXD) = 2ar(\Delta MBC)$...(1)
[From (ii) part]
Also, $ar(square ABMN) = 2ar(\Delta MBC)$...(2)
[$\cdot \parallel^{gm} ABMN$ and ΔMBC are on the same base MB and
between the same parallels MB and NC]
From (1) and (2), we have
 $ar(BYXD) = ar(ABMN)$
(iv) In ΔFCB and ΔACE , we have
 $FC = AC$ [Sides of a square]
 $\angle FCA + \angle ACB = \angle BCE + \angle ACB$
[By adding $\angle ACB$ on both sides.]
 $\Rightarrow \angle FCA + \angle ACB = \angle BCE + \angle ACB$
[By adding $\angle ACB$ on both sides.]
 $\Rightarrow \angle FCB = \angle ACE$ [By SAS congruency criterion]
(v) Since $\parallel^{gm} CYXE = 2ar(\Delta ACE)$
But $\Delta ACE = ar(\Delta FCB)$ [From (iv) part]
 $\therefore ar(\parallel^{gm} CYXE) = 2ar(\Delta FCB)$ [From (iv) part]
 $\therefore ar(\parallel^{gm} CYXE) = 2ar(\Delta FCB)$ [From (v) part]
 $\therefore ar(\parallel^{gm} ACFG) = 2ar(\Delta FCB)$ [From (v) part]
 $\therefore ar(\parallel^{gm} ACFG) = 2ar(\Delta FCB)$ [From (v) part]
 $\therefore ar(\parallel^{gm} ACFG) = 2ar(\Delta FCB)$ [From (v) part]
 $\therefore ar(\parallel^{gm} ACFG) = 2ar(\Delta FCB)$ [From (v) part]
 $\therefore ar(\parallel^{gm} ACFG) = 2ar(\Delta FCB)$ [From (v) part]
 $\therefore ar(\parallel^{gm} ACFG) = 2ar(\Delta FCB)$ [From (v) part]
 $\therefore ar(\parallel^{gm} ACFG) = 2ar(\Delta FCB)$ [From (v) part]
 $\therefore ar(\parallel^{gm} ACFG) = 2ar(\Delta FCB)$ [From (v) part]
 $\therefore ar(\parallel^{gm} ACFG) = 2ar(\Delta FCB)$ [From (v) part]
 $\therefore ar(\parallel^{gm} ACFG) = 2ar(\Delta FCB)$ [From (v) part]
 $\therefore ar(\parallel^{gm} ACFG) = 2ar(\Delta FCB)$ [From (v) part]
 $\therefore ar(\parallel^{gm} ACFG) = 2ar(\Delta FCB)$ [From (v) part]
 $\therefore ar(\parallel^{gm} ACFG) = ar(\parallel^{gm} ACFG)$ (4)

Thus, $ar(\parallel^{gm} BCED) = ar(\parallel^{gm} ABMN) + ar(\parallel^{gm} ACFG)$

[From (iii), (vi) parts]

6

7.

(i) *.*..

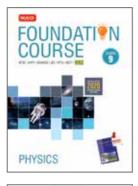
In *.*..

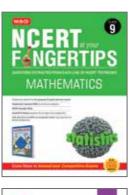
ar

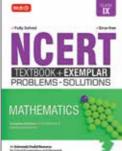
...

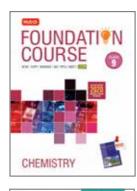
÷.

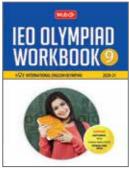
mtg BEST SELLING BOOKS FOR CLASS 9

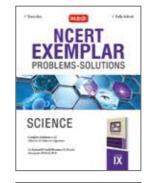


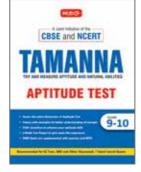


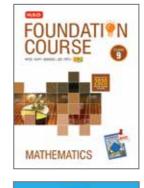


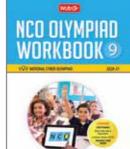


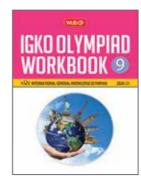


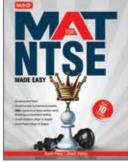


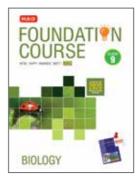




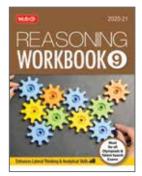












Visit www.mtg.in for complete information