Areas of Parallelograms and Triangles

EXERCISE - 9.1

1. The figures (i), (iii) and (v) lie on the same base and between the same parallels.

	Common base	Two parallels
Fig. (i)	$D C$	$D C$ and $A B$
Fig. (iii)	$Q R$	$Q R$ and $P S$
Fig. (v)	$A D$	$A D$ and $B Q$

EXERCISE - 9.2

1. We have, $A B=16 \mathrm{~cm}$
$\because A B=C D \quad$ [Opposite sides of parallelogram]
$\therefore \quad C D=16 \mathrm{~cm}$
Now, area of parallelogram $A B C D=C D \times A E$

$$
=(16 \times 8) \mathrm{cm}^{2}=128 \mathrm{~cm}^{2}
$$

Since, $C F \perp A D$
$\therefore \quad$ Area of parallelogram $A B C D=A D \times C F$
$\Rightarrow A D \times C F=128 \Rightarrow A D \times 10=128 \quad[\because C F=10 \mathrm{~cm}]$
$\Rightarrow \quad A D=\frac{128}{10}=12.8$
Thus, the required length of $A D$ is 12.8 cm .
2. Join $G E$ and $H F$, then $G E\|B C\| D A$
and $H F\|A B\| D C$.
$\because \quad A B=D C \Rightarrow A E=D G$
and $A B \| C D$
$\Rightarrow \quad A E \| D G$.

Thus, $A E G D$ is a parallelogram.
Similarly, ABFH, DCFH and EBCG are parallelograms.
We know that, if a triangle and a parallelogram are on the same base and between the same parallels, then the area of the triangle is equal to half the area of the parallelogram.
Now, $\triangle E F G$ and parallelogram $E B C G$ are on the same base $E G$ and between the same parallels $E G$ and $B C$.
$\therefore \quad \operatorname{ar}(\triangle E F G)=\frac{1}{2} \operatorname{ar}\left(\|^{\mathrm{gm}} E B C G\right)$
Similarly, $\operatorname{ar}(\triangle E H G)=\frac{1}{2} \operatorname{ar}\left(\|^{\mathrm{gm}} A E G D\right)$
Adding (i) and (ii), we get
$\operatorname{ar}(\triangle E F G)+\operatorname{ar}(\triangle E H G)=\frac{1}{2}\left[\operatorname{ar}\left(\|^{\mathrm{gm}} E B C G\right)+\operatorname{ar}\left(\|^{\mathrm{gm}} A E G D\right)\right]$
$\Rightarrow \quad \operatorname{ar}(E F G H)=\frac{1}{2} \operatorname{ar}\left(\left.\right|^{\mathrm{gm}} A B C D\right)$
Hence proved.
3. Since, $\triangle A P B$ and parallelogram $A B C D$ are on the same base $A B$ and between the same parallels $A B$ and $C D$.
$\therefore \quad \operatorname{ar}(\triangle A P B)=\frac{1}{2} \operatorname{ar}\left(\|^{g m} A B C D\right)$
Also, $\triangle B Q C$ and parallelogram $A B C D$ are on the same base $B C$ and between the same parallels $B C$ and $A D$.
$\therefore \quad \operatorname{ar}(\triangle B Q C)=\frac{1}{2} \operatorname{ar}\left(\|^{\mathrm{gm}} A B C D\right)$
...(ii)
From (i) and (ii), we have

$$
\operatorname{ar}(\triangle A P B)=\operatorname{ar}(\triangle B Q C)
$$

Hence proved.
4. We have a parallelogram $A B C D$, i.e., $A B \| C D$ and $B C \| A D$. Let us draw $E F \| A B$ and $H G \| A D$ through P.

Clearly, $A E F B, C D E F, A D G H$ and $B C G H$, all are parallelograms.
(i) Since, $\triangle A P B$ and parallelogram $A E F B$ are on the same base $A B$ and between the same parallels $A B$ and $E F$.
$\therefore \quad \operatorname{ar}(\triangle A P B)=\frac{1}{2} \operatorname{ar}\left(\|^{\mathrm{gm}} A E F B\right)$
Also, $\triangle P C D$ and parallelogram $C D E F$ are on the same base $C D$ and between the same parallels $C D$ and $E F$.
$\therefore \quad \operatorname{ar}(\triangle P C D)=\frac{1}{2} \operatorname{ar}\left(\|\left.\right|^{\mathrm{gm}} C D E F\right)$
Adding (1) and (2), we get
$\operatorname{ar}(\triangle A P B)+\operatorname{ar}(\triangle P C D)=\frac{1}{2} \operatorname{ar}\left(\|^{\mathrm{gm}} A E F B\right)+\frac{1}{2} \operatorname{ar}\left(\|^{\mathrm{gm}} C D E F\right)$
$\Rightarrow \quad \operatorname{ar}(\triangle A P B)+\operatorname{ar}(\triangle P C D)=\frac{1}{2} \operatorname{ar}\left(\|^{\mathrm{gm}} A B C D\right)$
(ii) $\triangle A P D$ and parallelogram $A D G H$ are on the same base $A D$ and between the same parallels $A D$ and $G H$.
$\therefore \quad \operatorname{ar}(\triangle A P D)=\frac{1}{2} \operatorname{ar}\left(\|^{\mathrm{gm}} A D G H\right)$
Similarly, $\operatorname{ar}(\triangle P B C)=\frac{1}{2} \operatorname{ar}\left(\|^{\mathrm{gm}} B C G H\right)$
Adding (4) and (5), we get
$\operatorname{ar}(\triangle A P D)+\operatorname{ar}(\triangle P B C)=$

$$
\begin{equation*}
\frac{1}{2} a r\left(\|^{\mathrm{gm}} A D G H\right)+\frac{1}{2} a r\left(\|^{\mathrm{gm}} B C G H\right) \tag{6}
\end{equation*}
$$

$\Rightarrow \quad \operatorname{ar}(\triangle A P D)+\operatorname{ar}(\triangle P B C)=\frac{1}{2} \operatorname{ar}\left(\|\left.\right|^{\mathrm{gm}} A B C D\right)$
From (3) and (6), we get
$\operatorname{ar}(\triangle A P D)+\operatorname{ar}(\triangle P B C)=\operatorname{ar}(\triangle A P B)+\operatorname{ar}(\triangle P C D)$
5. (i) Parallelogram $P Q R S$ and parallelogram $A B R S$ are on the same base $R S$ and between the same parallels $R S$ and $P B$.
$\therefore \quad \operatorname{ar}\left(\|^{\mathrm{gm}} P Q R S\right)=\operatorname{ar}\left(\|^{\mathrm{gm}} A B R S\right)$
(ii) $\triangle A X S$ and parallelogram $A B R S$ are on the same base $A S$ and between the same parallels $A S$ and $B R$.
$\therefore \quad \operatorname{ar}(\triangle A X S)=\frac{1}{2} \operatorname{ar}\left(\|^{\mathrm{gm}} A B R S\right)$
But $\operatorname{ar}\left(\|^{\mathrm{gm}} P Q R S\right)=\operatorname{ar}\left(\|^{\mathrm{gm}} A B R S\right)$ [Proved in (i) part] ...(2)
$\therefore \quad$ From (1) and (2), we get $\operatorname{ar}(\triangle A X S)=\frac{1}{2} \operatorname{ar}(P Q R S)$
6. Given, the farmer is having a field in the form of parallelogram $P Q R S$ and a point A is situated on $R S$. Join $A P$ and $A Q$.

Clearly, the field is divided into three parts i.e., $\triangle A P S, \triangle P A Q$ and $\triangle Q A R$.
Now, as $\triangle P A Q$ and parallelogram $P Q R S$ are on the same base $P Q$ and between the same parallels $P Q$ and $R S$.
$\therefore \quad \operatorname{ar}(\triangle P A Q)=\frac{1}{2} \operatorname{ar}\left(\|^{\mathrm{gm}} P Q R S\right)$
Now, $\operatorname{ar}\left(\|^{\mathrm{gm}} P Q R S\right)-\operatorname{ar}(\triangle P A Q)$
$=\operatorname{ar}\left(\|^{\mathrm{gm}} P Q R S\right)-\frac{1}{2} \operatorname{ar}\left(\|^{\mathrm{gm}} P Q R S\right)$
[From (i)]
$\Rightarrow \quad \operatorname{ar}(\triangle A P S)+\operatorname{ar}(\triangle Q A R)=\frac{1}{2} \operatorname{ar}\left(\|^{\mathrm{gm}} P Q R S\right)$
From (i) and (ii), we have

$$
\operatorname{ar}(\triangle P A Q)=\operatorname{ar}[(\triangle A P S)+(\triangle Q A R)]
$$

Thus, the farmer can sow wheat in $\triangle P A Q$ and pulses in $\triangle A P S$ and $\triangle Q A R$ or wheat in $\triangle A P S$ and $\triangle Q A R$ and pulses in $\triangle P A Q$.

EXERCISE - 9.3

1. In $\triangle A B C, A D$ is a median.
$\therefore \quad \operatorname{ar}(\triangle A B D)=\operatorname{ar}(\triangle A D C)$
$[\because$ A median divides the triangle into two triangles of equal area]
Similarly, in $\triangle B E C$, we have

$$
\begin{equation*}
\operatorname{ar}(\triangle B E D)=\operatorname{ar}(\triangle D E C) \tag{ii}
\end{equation*}
$$

Subtracting (ii) from (i), we get

$$
\operatorname{ar}(\triangle A B D)-\operatorname{ar}(\triangle B E D)=\operatorname{ar}(\triangle A D C)-\operatorname{ar}(\triangle D E C)
$$

$\Rightarrow \quad \operatorname{ar}(\triangle A B E)=\operatorname{ar}(\triangle A C E)$.
2. In a $\triangle A B C, A D$ is a median.

Since, a median divides the triangle into two triangles of equal area.

$$
\begin{equation*}
\therefore \quad \operatorname{ar}(\triangle A B D)=\frac{1}{2} \operatorname{ar}(\triangle A B C) \tag{i}
\end{equation*}
$$

Join B and E.

Now, in $\triangle A B D, B E$ is a median.
$[\because E$ is the mid-point of $A D]$
$\therefore \quad \operatorname{ar}(\triangle B E D)=\frac{1}{2} \operatorname{ar}(\triangle A B D)$
From (i) and (ii), we get

$$
\begin{aligned}
\operatorname{ar}(\triangle B E D) & =\frac{1}{2}\left[\frac{1}{2} \operatorname{ar}(\triangle A B C)\right] \\
\Rightarrow \quad \operatorname{ar}(\triangle B E D) & =\frac{1}{4} \operatorname{ar}(\triangle A B C)
\end{aligned}
$$

3. Let $A B C D$ be a parallelogram such that its diagonals intersect at O.
$\because \quad$ Diagonals of a parallelogram bisect each other.
$\therefore \quad A O=O C$ and $B O=O D$
Since, a median of a triangle divides it into two triangles of equal area.

$\therefore \quad \operatorname{ar}(\triangle B O C)=\operatorname{ar}(\triangle D O C)$
Similarly, $\operatorname{ar}(\triangle A O D)=\operatorname{ar}(\triangle D O C)$
and $\operatorname{ar}(\triangle A O B)=\operatorname{ar}(\triangle B O C)$
From (i), (ii) and (iii), we get
$\operatorname{ar}(\triangle A O B)=\operatorname{ar}(\triangle B O C)=\operatorname{ar}(\triangle C O D)=\operatorname{ar}(\triangle A O D)$
Thus, the diagonals of a parallelogram divide it into four triangles of equal area.
4. We have, $\triangle A B C$ and $\triangle A B D$ are on the same base $A B$.
$\because \quad C D$ is bisected at O.
[Given]
$\therefore \quad C O=D O$
Since, a median of a triangle divides it into two triangles of equal area.
$\therefore \quad \operatorname{ar}(\triangle O A C)=\operatorname{ar}(\triangle O A D)$
Similarly, $\operatorname{ar}(\triangle O B C)=\operatorname{ar}(\triangle O B D)$
Adding (i) and (ii), we get
$\operatorname{ar}(\triangle O A C)+\operatorname{ar}(\triangle O B C)=\operatorname{ar}(\triangle O A D)+\operatorname{ar}(\triangle O B D)$
$\Rightarrow \quad \operatorname{ar}(\triangle A B C)=\operatorname{ar}(\triangle A B D)$
5. We have, $\triangle A B C$ such that D, E and F are the mid-points of $B C, C A$ and $A B$ respectively.
(i) In $\triangle A B C, E$ and F are the mid-
 points of $A C$ and $A B$ respectively.
$\therefore \quad E F \| B C$ and $E F=\frac{1}{2} B C \quad$ [By mid-point theorem]
$\Rightarrow \quad E F \| B D$ and $E F=B D \quad[\because D$ is the mid-point of $B C]$ Now, $B D E F$ is a quadrilateral whose one pair of opposite sides is parallel and of equal lengths.
$\therefore \quad B D E F$ is a parallelogram.
(ii) We have proved that $B D E F$ is a parallelogram.

Similarly, $D C E F$ is a parallelogram and $D E A F$ is a parallelogram.
Now, as diagonal of a parallelogram divides it into two triangles of equal area
$\therefore \quad \operatorname{ar}(\triangle B D F)=\operatorname{ar}(\triangle D E F)$
$[\because F D$ is a diagonal of parallelogram $B D E F]$
Similarly, $\operatorname{ar}(\triangle C D E)=\operatorname{ar}(\triangle D E F)$
and $\operatorname{ar}(\triangle A E F)=\operatorname{ar}(\triangle D E F)$
From (1), (2) and (3), we have
$\operatorname{ar}(\triangle A E F)=\operatorname{ar}(\triangle F B D)=\operatorname{ar}(\triangle C D E)=\operatorname{ar}(\triangle D E F)$
Thus, $\operatorname{ar}(\triangle A B C)=\operatorname{ar}(\triangle A E F)+\operatorname{ar}(\triangle F B D)$

$$
+\operatorname{ar}(\triangle D E F)+\operatorname{ar}(\triangle C D E)=4 \operatorname{ar}(\triangle D E F)
$$

$\Rightarrow \quad \operatorname{ar}(\triangle D E F)=\frac{1}{4} \operatorname{ar}(\triangle A B C)$
(iii) We have, $\operatorname{ar}\left(\|^{\mathrm{gm}} B D E F\right)=\operatorname{ar}(\triangle B D F)+\operatorname{ar}(\triangle D E F)$
$=\operatorname{ar}(\triangle D E F)+\operatorname{ar}(\triangle D E F) \quad[\because \operatorname{ar}(\triangle D E F)=\operatorname{ar}(\triangle B D F)]$
$=2 \operatorname{ar}(\triangle D E F)$
$=2\left[\frac{1}{4} \operatorname{ar}(\triangle A B C)\right]=\frac{1}{2} \operatorname{ar}(\triangle A B C)$
Thus, $\operatorname{ar}\left(\|^{g m} B D E F\right)=\frac{1}{2} \operatorname{ar}(\triangle A B C)$.
6. We have a quadrilateral $A B C D$ whose diagonals $A C$ and $B D$ intersect at O such that
$O B=O D$.
Also, we have $A B=C D$
Let us draw $D E \perp A C$ and $B F \perp A C$.

(i) In $\triangle D E O$ and $\triangle B F O$, we have
$D O=B O$
[Given]
$\angle D O E=\angle B O F$
$\angle D E O=\angle B F O$
[Vertically opposite angles]
[Each 90°]
$\therefore \quad \triangle D E O \cong \triangle B F O$
[By AAS congruency criterion]
$\Rightarrow D E=B F$
[By CPCT]
and $\operatorname{ar}(\triangle D E O)=\operatorname{ar}(\triangle B F O)$
Now, in $\triangle D E C$ and $\triangle B F A$, we have
$\angle D E C=\angle B F A$
[Each 90 ${ }^{\circ}$]
$D E=B F$
[Proved above]
$D C=B A$
$\therefore \quad \triangle D E C \cong \triangle B F A$
[By RHS congruency criterion]
$\Rightarrow \operatorname{ar}(\triangle D E C)=\operatorname{ar}(\triangle B F A)$
and $\angle 1=\angle 2$
[By CPCT]
$\therefore \quad$ Adding (1) and (2), we get
$\operatorname{ar}(\triangle D E O)+\operatorname{ar}(\triangle D E C)=\operatorname{ar}(\triangle B F O)+\operatorname{ar}(\triangle B F A)$
$\Rightarrow \operatorname{ar}(\triangle D O C)=\operatorname{ar}(\triangle A O B)$
(ii) Since, $\operatorname{ar}(\triangle D O C)=\operatorname{ar}(\triangle A O B)$
[Proved above]
Adding $\operatorname{ar}(\triangle B O C)$ on both sides, we get
$\operatorname{ar}(\triangle D O C)+\operatorname{ar}(\triangle B O C)=\operatorname{ar}(\triangle A O B)+\operatorname{ar}(\triangle B O C)$
$\Rightarrow \operatorname{ar}(\triangle D C B)=\operatorname{ar}(\triangle A C B)$
(iii) Since, $\triangle D C B$ and $\triangle A C B$ are on the same base $C B$ and having equal areas.
$\therefore \quad$ They must lie between the same parallels.
$\Rightarrow \quad C B \| D A$
Also, $\angle 1=\angle 2$,
[From (3)]
which form a pair of alternate interior angles.
So, $A B \| C D$
Hence, $A B C D$ is a parallelogram.
7. We have, a $\triangle A B C$ and points D and E on $A B$ and $A C$ respectively are such that $\operatorname{ar}(\triangle D B C)=\operatorname{ar}(\triangle E B C)$.
Since, $\triangle D B C$ and $\triangle E B C$ are on the same base $B C$ and having same area.
\therefore They must lie between the same parallels.

Hence, $D E \| B C$
Hence proved.
8. We have, a $\triangle A B C$ such that $X Y\|B C, B E\| A C$ and $C F \| A B$.
Since, $X Y \| B C$ and $B E \| C Y$.
$\therefore \quad B C Y E$ is a parallelogram.
Now, the parallelogram $B C Y E$ and $\triangle A B E$ are on the same base

$B E$ and between the same parallels $B E$ and $A C$.
$\therefore \quad \operatorname{ar}(\triangle A B E)=\frac{1}{2} \operatorname{ar}\left(\|{ }^{\mathrm{gm}} B C Y E\right)$
Again, $X Y \| B C$ and $C F \| A B \quad$ [Given]
$\Rightarrow \quad X F \| B C$ and $C F \| X B$
$\therefore \quad B C F X$ is a parallelogram.
Now, $\triangle A C F$ and parallelogram $B C F X$ are on the same base $C F$ and between the same parallels $A B$ and $F C$.
$\therefore \quad \operatorname{ar}(\triangle A C F)=\frac{1}{2} \operatorname{ar}\left(\|^{\mathrm{gm}} B C F X\right)$
Also parallelogram BCFX and parallelogram BCYE are on the same base $B C$ and between the same parallels $B C$ and $E F$.
$\therefore \quad \operatorname{ar}\left(\|^{\mathrm{gm}} B C F X\right)=\operatorname{ar}\left(\|^{\mathrm{gm}} B C Y E\right)$
From (i), (ii) and (iii), we get

$$
\begin{equation*}
\operatorname{ar}(\triangle A B E)=\operatorname{ar}(\triangle A C F) \tag{iii}
\end{equation*}
$$

9. Join $A C$ and $P Q$.

We know that diagonal of a parallelogram divides it into two triangles of equal area.
$\therefore \quad \operatorname{ar}(\triangle A B C)=\frac{1}{2} \operatorname{ar}\left(\| \|^{\mathrm{gm}} A B C D\right)$

$[\because A B C D$ is a parallelogram and $A C$ is its diagonal.]
Again, $P B Q R$ is a parallelogram and $Q P$ is its diagonal.
$\therefore \quad \operatorname{ar}(\triangle B P Q)=\frac{1}{2} \operatorname{ar}\left(\|^{\mathrm{gm}} P B Q R\right)$
Since, $\triangle A C Q$ and $\triangle A P Q$ are on the same base $A Q$ and between the same parallels $A Q$ and $C P$.
$\therefore \quad \operatorname{ar}(\triangle A C Q)=\operatorname{ar}(\triangle A P Q)$
$\Rightarrow \operatorname{ar}(\triangle A C Q)-\operatorname{ar}(\triangle A B Q)=\operatorname{ar}(\triangle A P Q)-\operatorname{ar}(\triangle A B Q)$
[Subtracting $\operatorname{ar}(\triangle A B Q)$ from both sides]
$\Rightarrow \operatorname{ar}(\triangle A B C)=\operatorname{ar}(\triangle B P Q)$
From (i), (ii) and (iii), we get
$\frac{1}{2} \operatorname{ar}\left(\|^{\mathrm{gm}} A B C D\right)=\frac{1}{2} \operatorname{ar}\left(\|^{\mathrm{gm}} P B Q R\right)$
$\Rightarrow \quad \operatorname{ar}\left(\|\left.\right|^{\mathrm{gm}} A B C D\right)=\operatorname{ar}\left(\|^{\mathrm{gm}} P B Q R\right)$
10. We have, a trapezium $A B C D$ with $A B \| C D$ and its diagonals $A C$ and $B D$ intersect at O.
Since, triangles on the same base and between the same parallels have equal areas and here $\triangle A B D$ and $\triangle A B C$ are on the same base $A B$ and between
 the same parallels $A B$ and $D C$.
$\therefore \quad \operatorname{ar}(\triangle A B D)=\operatorname{ar}(\triangle A B C)$
Subtracting $\operatorname{ar}(\triangle A O B)$ from both sides, we get

$$
\begin{aligned}
& \operatorname{ar}(\triangle A B D)-\operatorname{ar}(\triangle A O B)=\operatorname{ar}(\triangle A B C)-\operatorname{ar}(\triangle A O B) \\
\Rightarrow \quad & \operatorname{ar}(\triangle A O D)=\operatorname{ar}(\triangle B O C)
\end{aligned}
$$

11. We have, a pentagon $A B C D E$ and a line $B F$ such that $B F \| A C$ and intersect $D C$ produced at F.
(i) Since, the triangles between the same parallels and on the same base are equal in area and here $\triangle A C B$ and $\triangle A C F$ are on the same base $A C$ and between the same parallels $A C$ and $B F$.
$\therefore \quad \operatorname{ar}(\triangle A C B)=\operatorname{ar}(\triangle A C F)$
(ii) Since, $\operatorname{ar}(\triangle A C B)=\operatorname{ar}(\triangle A C F) \quad$ [Proved above]

Adding ar (quad. $A E D C$) on both sides, we get
$\operatorname{ar}(\triangle A C B)+\operatorname{ar}(q u a d . A E D C)=\operatorname{ar}(\triangle A C F)+\operatorname{ar}(q u a d . A E D C)$ $\therefore \quad \operatorname{ar}(A B C D E)=\operatorname{ar}(A E D F)$
12. Let the plot be in the form of a quadrilateral $A B C D$.
Join AC.
Draw $D F \| A C$ such that it meets $B C$ produced at F and join A and F.
Now, $\triangle D A F$ and $\triangle D C F$ are on the same base $D F$ and between the same parallels $A C$ and $D F$.
$\therefore \quad \operatorname{ar}(\triangle D A F)=\operatorname{ar}(\triangle D C F)$
Subtracting $\operatorname{ar}(\triangle D E F)$ from both sides, we get $\operatorname{ar}(\triangle D A F)-\operatorname{ar}(\triangle D E F)=\operatorname{ar}(\triangle D C F)-\operatorname{ar}(\triangle D E F)$
$\Rightarrow \quad \operatorname{ar}(\triangle A D E)=\operatorname{ar}(\triangle C E F)$
Thus, the portion of $\triangle A D E$ can be taken over by the Gram Panchyat by adding the land ($\triangle C E F$) to his (Itwaari) land so as to form a triangular plot i.e., $\triangle A B F$.
Note that $\operatorname{ar}(\triangle A B F)=\operatorname{ar}($ quad. $A B C D)$.
$[\because \operatorname{ar}(\triangle C E F)=\operatorname{ar}(\triangle A D E)$
[Proved above]
$\therefore \quad$ Adding ar (quad. $A B C E$) on both sides, we get $\operatorname{ar}(\triangle C E F)+\operatorname{ar}(q u a d . A B C E)$ $=\operatorname{ar}(\triangle A D E)+\operatorname{ar}(q u a d . A B C E)$
$\Rightarrow \quad \operatorname{ar}(\triangle A B F)=\operatorname{ar}($ quad. $A B C D)]$
13. We have, a trapezium $A B C D$ with $A B \| D C$ and a line $X Y$ such that $X Y \| A C$ meets $A B$ at X and $B C$ at Y.
Join CX.

$\because \quad \triangle A D X$ and $\triangle A C X$ are on the same base $A X$ and between the same parallels $A B$ and $D C$.
$\therefore \quad \operatorname{ar}(\triangle A D X)=\operatorname{ar}(\triangle A C X)$
$\because \quad \triangle A C X$ and $\triangle A C Y$ are on the same base $A C$ and between the same parallels $A C$ and $X Y$.
$\therefore \quad \operatorname{ar}(\triangle A C X)=\operatorname{ar}(\triangle A C Y)$
From (i) and (ii), we have $\operatorname{ar}(\triangle A D X)=\operatorname{ar}(\triangle A C Y)$
Hence proved.
14. We have, $A P\|B Q\| C R$.
$\because \quad \triangle B C Q$ and $\triangle B Q R$ are on the same base $B Q$ and between the same parallels $B Q$ and $C R$.
$\therefore \quad \operatorname{ar}(\triangle B C Q)=\operatorname{ar}(\triangle B Q R)$
Similarly, $\triangle A B Q$ and $\triangle P B Q$ are on the same base $B Q$ and between the same parallels $A P$ and $B Q$.
$\therefore \quad \operatorname{ar}(\triangle A B Q)=\operatorname{ar}(\triangle P B Q)$
Adding (i) and (ii), we get
$\operatorname{ar}(\triangle B C Q)+\operatorname{ar}(\triangle A B Q)=\operatorname{ar}(\triangle B Q R)+\operatorname{ar}(\triangle P B Q)$
$\Rightarrow \quad \operatorname{ar}(\triangle A Q C)=\operatorname{ar}(\triangle P B R)$
Hence proved.
15. We have, a quadrilateral $A B C D$ and its diagonals $A C$ and $B D$ intersect at O such that $\operatorname{ar}(\triangle A O D)=\operatorname{ar}(\triangle B O C)$

Adding $\operatorname{ar}(\triangle A O B)$ on both sides, we get
$\operatorname{ar}(\triangle A O D)+\operatorname{ar}(\triangle A O B)=\operatorname{ar}(\triangle B O C)+\operatorname{ar}(\triangle A O B)$
$\Rightarrow \operatorname{ar}(\triangle A B D)=\operatorname{ar}(\triangle A B C)$
Also, they lie on the same base $A B$.
$\therefore \quad$ They must lie between the same parallels.
$\therefore \quad A B \| D C$
Now, $A B C D$ is a quadrilateral having a pair of opposite sides parallel. So, $A B C D$ is a trapezium.
Hence proved.
16. We have, $\operatorname{ar}(\triangle D R C)=\operatorname{ar}(\triangle D P C)$
[Given]
Also, they lie on the same base $D C$.
$\therefore \quad \triangle D R C$ and $\triangle D P C$ must lie between the same parallels.
So, $D C \| R P$. Thus, a pair of opposite sides of quadrilateral $D C P R$ is parallel.
$\therefore \quad$ Quadrilateral $D C P R$ is a trapezium.
Again, we have
$\operatorname{ar}(\triangle B D P)=\operatorname{ar}(\triangle A R C)$
Also, we have $\operatorname{ar}(\triangle D P C)=\operatorname{ar}(\triangle D R C)$
Subtracting (ii) from (i), we get
$\operatorname{ar}(\triangle B D P)-\operatorname{ar}(\triangle D P C)=\operatorname{ar}(\triangle A R C)-\operatorname{ar}(\triangle D R C)$
$\Rightarrow \quad \operatorname{ar}(\triangle B D C)=\operatorname{ar}(\triangle A D C)$
Also, they lie on the same base $D C$.
$\therefore \quad \triangle B D C$ and $\triangle A D C$ must lie between the same parallels.
So, $A B \| D C$ and hence quadrilateral $A B C D$ is a trapezium.

EXERCISE - 9.4

1. We have, a parallelogram $A B C D$ and a rectangle $A B E F$ such that
$\operatorname{ar}\left(\|\left.\right|^{\mathrm{gm}} A B C D\right)=\operatorname{ar}($ rect. $A B E F)$
Now, $A B=C D$

[Opposite sides of parallelogram]
and $A B=E F$
[Opposite sides of a rectangle]
$\Rightarrow C D=E F$
$\Rightarrow A B+C D=A B+E F$
Now, $B E<B C$ and $A F<A D$
$[\because$ In a right triangle, hypotenuse is the longest side]
$\Rightarrow \quad(B C+A D)>(B E+A F)$
From (i) and (ii), we get
$(A B+C D)+(B C+A D)>(A B+E F)+(B E+A F)$
$\Rightarrow \quad(A B+B C+C D+D A)>(A B+B E+E F+F A)$
\Rightarrow Perimeter of parallelogram $A B C D>$
Perimeter of rectangle $A B E F$
2. Draw $A F$ perpendicular to $B C$.

Then, $A F$ will be the height of $\triangle A B D, \triangle A D E$ and $\triangle A E C$. Area of a triangle $=\frac{1}{2} \times$ base \times height
$\therefore \quad \operatorname{ar}(\triangle A B D)=\frac{1}{2} \times B D \times A F$
Similarly, $\operatorname{ar}(\triangle A D E)=\frac{1}{2} \times D E \times A F$ and

$\operatorname{ar}(\triangle A E C)=\frac{1}{2} \times E C \times A F$

Since, $B D=D E=E C$
$\therefore \quad\left(\frac{1}{2} \times B D \times A F\right)=\left(\frac{1}{2} \times D E \times A F\right)=\left(\frac{1}{2} \times E C \times A F\right)$
$\Rightarrow \operatorname{ar}(\triangle A B D)=\operatorname{ar}(\triangle A D E)=\operatorname{ar}(\triangle A E C)$.
3. We have, parallelograms $A B C D, D C F E$ and $A B F E$. Since, opposite sides of parallelogram are equal.
$\therefore \quad A D=B C, D E=C F$ and $A E=B F$
In $\triangle A D E$ and $\triangle B C F$, we have
$A D=B C, D E=C F$ and $A E=B F$
(From (i))
$\therefore \quad \triangle A D E \cong \triangle B C F \quad$ (By SSS congruence criterion)
$\Rightarrow \operatorname{ar}(\triangle A D E)=\operatorname{ar}(\triangle B C F)$
4. We have, a parallelogram $A B C D$ and $A D=C Q$.

Let us join $A C$.
We know that triangles on the same base and between the same parallels are equal in area. Since $\triangle Q A C$ and $\triangle Q D C$ are on the same base $Q C$ and between the same parallels $A D$ and $B Q$.

$\therefore \quad \operatorname{ar}(\triangle Q A C)=\operatorname{ar}(\triangle Q D C)$
Subtracting $\operatorname{ar}(\triangle Q P C)$ from both sides, we get
$\operatorname{ar}(\triangle Q A C)-\operatorname{ar}(\triangle Q P C)=\operatorname{ar}(\triangle Q D C)-\operatorname{ar}(\triangle Q P C)$
$\Rightarrow \operatorname{ar}(\triangle P A C)=\operatorname{ar}(\triangle Q D P)$
Since, $\triangle P A C$ and $\triangle P B C$ are on the same base $P C$ and between the same parallels $A B$ and $C D$
$\therefore \quad \operatorname{ar}(\triangle P A C)=\operatorname{ar}(\triangle P B C)$
From (i) and (ii), we get

$$
\begin{equation*}
\operatorname{ar}(\triangle P B C)=\operatorname{ar}(\triangle Q D P) \tag{ii}
\end{equation*}
$$

5. Join $E C$ and $A D$. Draw $E P \perp B C$.

Let $A B=B C=C A=a$, then $B D=D E=B E=\frac{a}{2}$.
(i) Clearly, $\operatorname{ar}(\triangle A B C)=\frac{\sqrt{3}}{4} a^{2}$ and

$$
\operatorname{ar}(\triangle B D E)=\frac{\sqrt{3}}{4}\left(\frac{a}{2}\right)^{2}=\frac{\sqrt{3}}{16} a^{2}
$$

$\Rightarrow \operatorname{ar}(\triangle B D E)=\frac{1}{4} \operatorname{ar}(\triangle A B C)$

(ii) Since, $\triangle A B C$ and $\triangle B E D$ are equilateral triangles.
$\therefore \quad \angle A C B=\angle D B E=60^{\circ}$
$\Rightarrow B E \| A C[\because$ A pair of alternate interior angles is equal.] Now, as $\triangle B A E$ and $\triangle B E C$ are on the same base $B E$ and between the same parallels $B E$ and $A C$.
$\therefore \quad \operatorname{ar}(\triangle B A E)=\operatorname{ar}(\triangle B E C)$
$\Rightarrow \quad \operatorname{ar}(\triangle B A E)=2 \operatorname{ar}(\triangle B D E)$
$[\because D E$ is median of $\triangle B E C \therefore \operatorname{ar}(\triangle B E C)=2 \operatorname{ar}(\triangle B D E)]$
$\Rightarrow \operatorname{ar}(\triangle B D E)=\frac{1}{2} \operatorname{ar}(\triangle B A E)$
(iii) Since, $\operatorname{ar}(\triangle A B C)=4 \operatorname{ar}(\triangle B D E) \quad$ [Proved in (i) part] $\operatorname{ar}(\triangle B E C)=2 \operatorname{ar}(\triangle B D E) \quad[\because D E$ is median of $\triangle B E C]$
$\Rightarrow \operatorname{ar}(\triangle A B C)=2 \operatorname{ar}(\triangle B E C)$
(iv) Since $\triangle A B C$ and $\triangle B D E$ are equilateral triangles.
$\therefore \quad \angle A B C=\angle B D E=60^{\circ}$
$\Rightarrow \quad A B \| D E$
[\because A pair of alternate interior angles is equal]

Now, as $\triangle B E D$ and $\triangle A E D$ are on the same base $E D$ and between same parallels $A B$ and $D E$.
$\therefore \quad \operatorname{ar}(\triangle B E D)=\operatorname{ar}(\triangle A E D)$
Subtracting $\operatorname{ar}(\triangle E F D)$ from both sides, we get
$\Rightarrow \operatorname{ar}(\triangle B E D)-\operatorname{ar}(\triangle E F D)=\operatorname{ar}(\triangle A E D)-\operatorname{ar}(\triangle E F D)$
$\Rightarrow \operatorname{ar}(\triangle B F E)=\operatorname{ar}(\triangle A F D)$
(v) Since, $A B C$ is an equilateral triangle, therefore $A D$ will be perpendicular to $B C$ also.
In right angled $\triangle A B D$, we have $A D^{2}=A B^{2}-B D^{2}$
$\Rightarrow A D^{2}=a^{2}-\frac{a^{2}}{4}=\frac{4 a^{2}-a^{2}}{4}=\frac{3 a^{2}}{4} \Rightarrow A D=\frac{\sqrt{3} a}{2}$
In right angled $\triangle P E D, E P^{2}=D E^{2}-D P^{2}$
$\Rightarrow E P^{2}=\left(\frac{a}{2}\right)^{2}-\left(\frac{a}{4}\right)^{2}=\frac{a^{2}}{4}-\frac{a^{2}}{16}=\frac{3 a^{2}}{16} \Rightarrow E P=\frac{\sqrt{3} a}{4}$
$\therefore \quad \operatorname{ar}(\triangle A F D)=\frac{1}{2} \times F D \times A D=\frac{1}{2} \times F D \times \frac{\sqrt{3}}{2} a$
and $\operatorname{ar}(\triangle E F D)=\frac{1}{2} \times F D \times E P=\frac{1}{2} \times F D \times \frac{\sqrt{3}}{4} a$
From (1) and (2), we get $\operatorname{ar}(\triangle A F D)=2 \operatorname{ar}(\triangle F E D)$
Also, we have $\operatorname{ar}(\triangle A F D)=\operatorname{ar}(\triangle B F E)$
[From (iv) part]
$\Rightarrow \quad \operatorname{ar}(\triangle B F E)=2 \operatorname{ar}(\triangle F E D)$
(vi) $\operatorname{ar}(\triangle A F C)=\operatorname{ar}(\triangle A F D)+\operatorname{ar}(\triangle A D C)$
$=\operatorname{ar}(\triangle B F E)+\frac{1}{2} \operatorname{ar}(\triangle A B C) \quad[$ From (iv) part and $D E$ is the median of $\triangle A B C]$
$=\operatorname{ar}(\triangle B F E)+\frac{1}{2} \times 4 \times \operatorname{ar}(\triangle B D E) \quad$ [From (i) part]
$=\operatorname{ar}(\triangle B F E)+2 \operatorname{ar}(\triangle B D E)$
$=2 \operatorname{ar}(\triangle F E D)+2[\operatorname{ar}(\triangle B F E)+\operatorname{ar}(\triangle F E D)] \quad[$ From (v) part]
$=2 \operatorname{ar}(\triangle F E D)+2[2 \operatorname{ar}(\triangle F E D)+\operatorname{ar}(\triangle F E D)]$ [From (v) part]
$=2 \operatorname{ar}(\triangle F E D)+2[3 \operatorname{ar}(\triangle F E D)]$
$=2 \operatorname{ar}(\triangle F E D)+6 \operatorname{ar}(\triangle F E D)=8 \operatorname{ar}(\triangle F E D)$
$\therefore \quad \frac{1}{8} \operatorname{ar}(\triangle A F C)=\operatorname{ar}(\triangle F E D)$
6. We have a quadrilateral $A B C D$ such that its diagonals $A C$ and $B D$ intersect at P.
Draw $A M \perp B D$ and $C N \perp B D$.
Now, $\operatorname{ar}(\triangle A P B)=\frac{1}{2} \times B P \times A M$

and $\operatorname{ar}(\triangle C P D)=\frac{1}{2} \times D P \times C N$

$$
\begin{aligned}
\therefore \quad \operatorname{ar}(\triangle A P B) \times \operatorname{ar}(\triangle C P D)=(& \left.\frac{1}{2} \times B P \times A M\right) \\
& \times\left(\frac{1}{2} \times D P \times C N\right)
\end{aligned}
$$

$$
\begin{equation*}
=\frac{1}{4} \times B P \times D P \times A M \times C N \tag{i}
\end{equation*}
$$

Similarly, $\operatorname{ar}(\triangle A P D) \times \operatorname{ar}(\triangle B P C)$

$$
\begin{align*}
& =\left(\frac{1}{2} \times D P \times A M\right) \times\left(\frac{1}{2} \times B P \times C N\right) \\
& =\frac{1}{4} \times B P \times D P \times A M \times C N \tag{ii}
\end{align*}
$$

From (i) and (ii), we get
$\operatorname{ar}(\triangle A P B) \times \operatorname{ar}(\triangle C P D)=\operatorname{ar}(\triangle A P D) \times \operatorname{ar}(\triangle B P C)$
7. We have, a $\triangle A B C$ such that P is the mid-point of $A B$ and Q is the mid-point of $B C$.
Also, R is the mid-point of $A P$.
Join $A Q$ and $P C$.
(i) In $\triangle A P Q, R$ is the mid-point of $A P$.

$\therefore \quad R Q$ is a median of $\triangle A P Q$.
So, $\operatorname{ar}(\triangle P R Q)=\frac{1}{2} \operatorname{ar}(\triangle A P Q)$
In $\triangle A B Q, P$ is the mid-point of $A B$.
$\therefore \quad Q P$ is a median of $A B Q$.
So, $\operatorname{ar}(\triangle A P Q)=\frac{1}{2} \operatorname{ar}(\triangle A B Q)$
From (1) and (2), we get

$$
\begin{align*}
& \operatorname{ar}(\triangle P R Q)=\frac{1}{2} \times \frac{1}{2} \operatorname{ar}(\triangle A B Q) \\
& \quad=\frac{1}{4} \operatorname{ar}(\triangle A B Q)=\frac{1}{4} \times \frac{1}{2} \operatorname{ar}(\triangle A B C) \\
& \quad[\because A Q \text { is a median of } \triangle A B C] \\
& =\frac{1}{8} \operatorname{ar}(\triangle A B C) \tag{3}
\end{align*}
$$

Now, $\operatorname{ar}(\triangle A R C)=\frac{1}{2} \operatorname{ar}(\triangle A P C)$
$[\because C R$ is a median of $\triangle A P C]$

$$
\begin{align*}
& =\frac{1}{2} \times \frac{1}{2} \operatorname{ar}(\triangle A B C) \quad[\because C P \text { is a median of } \triangle A B C] \\
& =\frac{1}{4}(\operatorname{ar} \triangle A B C) \tag{4}
\end{align*}
$$

From (3) and (4), we get
$\operatorname{ar}(\triangle P R Q)=\frac{1}{8} \operatorname{ar}(\triangle A B C)=\frac{1}{2} \times\left(\frac{1}{4} \operatorname{ar} \triangle A B C\right)=\frac{1}{2} \operatorname{ar}(\triangle A R C)$
Thus, $\operatorname{ar}(\triangle P R Q)=\frac{1}{2} \operatorname{ar}(\triangle A R C)$
(ii) In $\triangle R B C, R Q$ is a median.
$\therefore \quad \operatorname{ar}(\triangle R Q C)=\operatorname{ar}(\triangle R B Q)=\operatorname{ar}(\triangle P R Q)+\operatorname{ar}(\triangle B P Q)$

$$
\begin{aligned}
& =\frac{1}{8} \operatorname{ar}(\triangle A B C)+\operatorname{ar}(\triangle B P Q) \\
& =\frac{1}{8} \operatorname{ar}(\triangle A B C)+\frac{1}{2} \operatorname{ar}(\triangle P B C) \\
& \quad[\because P Q \text { is the median of } \triangle B P C] \\
& =\frac{1}{8} \operatorname{ar}(\triangle A B C)+\frac{1}{2}\left(\frac{1}{2} \operatorname{ar}(\triangle A B C)\right) \\
& \quad[\because C P \text { is the median of } \triangle A B C] \\
& =\frac{1}{8} \operatorname{ar}(\triangle A B C)+\frac{1}{4} \operatorname{ar}(\triangle A B C) \\
& =\left(\frac{1}{8}+\frac{1}{4}\right) \operatorname{ar}(\triangle A B C)=\frac{3}{8} \operatorname{ar}(\triangle A B C)
\end{aligned}
$$

(iii) $Q P$ is a median of $\triangle A B Q$.
$\therefore \quad \operatorname{ar}(\triangle P B Q)=\frac{1}{2}(\triangle A B Q)=\frac{1}{2} \times \frac{1}{2} \operatorname{ar}(\triangle A B C)$
$[\because A Q$ is the median of $\triangle A B C]$

$$
=\frac{1}{4} \operatorname{ar}(\triangle A B C)=\operatorname{ar}(\triangle A R C)
$$

[From (4)]
Thus, $\operatorname{ar}(\triangle P B Q)=\operatorname{ar}(\triangle A R C)$
8. We have, a right $\triangle A B C$ such that $B C E D, A C F G$ and $A B M N$ are squares on its sides $B C, C A$ and $A B$ respectively. Also, line segment $A X \perp D E$ is drawn such that it meets $B C$ at Y.
(i) In $\triangle A B D$ and $\triangle M B C$, we have $\left.\begin{array}{l}A B=M B \\ B D=B C\end{array}\right\}$ [Sides of a square]
$\angle C B D=\angle M B A$
[Each 90°]
$\Rightarrow \quad \angle C B D+\angle A B C=\angle M B A+\angle A B C$
[By adding $\angle A B C$ on both sides]
$\Rightarrow \quad \angle A B D=\angle M B C$
$\therefore \quad \triangle A B D \cong \triangle M B C \quad$ [By SAS congruency criterion]
(ii) Since, $A X \perp D E$ therefore $A X \| B D$ and $A X \| C E$.

Thus, $B Y X D$ and $C Y X E$ both are parallelograms.
Now, as parallelogram $B Y X D$ and $\triangle A B D$ are on the same base $B D$ and between the same parallels $B D$ and $A X$.
$\therefore \quad \operatorname{ar}(\triangle A B D)=\frac{1}{2} \operatorname{ar}\left(\|^{\mathrm{gm}} B Y X D\right)$
But $\operatorname{ar}(\triangle A B D)=\operatorname{ar}(\triangle M B C)$
[Congruent triangles have equal areas]
$\Rightarrow \quad \operatorname{ar}(\triangle M B C)=\frac{1}{2} \operatorname{ar}\left(\|^{\mathrm{gm}} B Y X D\right)$
$\Rightarrow \quad \operatorname{ar}\left(\|\left.\right|^{\mathrm{gm}} B Y X D\right)=2 \operatorname{ar}(\triangle M B C)$
(iii) Since, $\operatorname{ar}(B Y X D)=2 \operatorname{ar}(\triangle M B C)$
[From (ii) part]
Also, $\operatorname{ar}($ square $A B M N)=2 \operatorname{ar}(\triangle M B C)$
$\left[\because\left\|\|^{g m} A B M N\right.\right.$ and $\triangle M B C$ are on the same base $M B$ and between the same parallels $M B$ and $N C]$
From (1) and (2), we have

$$
\operatorname{ar}(B Y X D)=\operatorname{ar}(A B M N)
$$

(iv) In $\triangle F C B$ and $\triangle A C E$, we have
$F C=A C \quad$ [Sides of a square]

$$
C B=C E
$$ [Sides of a square]

$$
\angle F C A=\angle B C E
$$

[Each 90°]
$\Rightarrow \quad \angle F C A+\angle A C B=\angle B C E+\angle A C B$
[By adding $\angle A C B$ on both sides.]
$\Rightarrow \quad \angle F C B=\angle A C E$
$\therefore \quad \triangle F C B \cong \triangle A C E \quad$ [By SAS congruency criterion]
(v) Since $\|^{\mathrm{gm}} C Y X E$ and $\triangle A C E$ are on the same base $C E$ and between the same parallels $C E$ and $A X$.
$\therefore \quad \operatorname{ar}\left(\|^{\mathrm{gm}} C Y X E\right)=2 \operatorname{ar}(\triangle A C E)$
But $\triangle A C E \cong \triangle F C B$
[From (iv) part]
$\therefore \quad \operatorname{ar}(\triangle A C E)=\operatorname{ar}(\triangle F C B)$
$[\because$ Congruent triangles are equal in area.]
$\therefore \quad \operatorname{ar}\left(\|\left.\right|^{\mathrm{gm}} C Y X E\right)=2 \operatorname{ar}(\triangle F C B)$
(vi) Since, $\operatorname{ar}\left(\|^{\mathrm{gm}} C Y X E\right)=2 \operatorname{ar}(\triangle F C B)$ [From (v) part]

Also, $\left(\|{ }^{g m} A C F G\right)$ and $\triangle F C B$ are on the same base $F C$ and between the same parallels $F C$ and $B G$.
$\therefore \quad \operatorname{ar}\left(\|^{\mathrm{gm}} A C F G\right)=2 \operatorname{ar}(\triangle F C B)$
From (3) and (4), we get
$\operatorname{ar}\left(\|^{\mathrm{gm}} C Y X E\right)=\operatorname{ar}\left(\|^{\mathrm{gm}} A C F G\right)$
(vii) Now, $\operatorname{ar}\left(\|^{\mathrm{gm}} B C E D\right)$

$$
\begin{align*}
& =\operatorname{ar}\left(\|^{\mathrm{gm}} C Y X E\right)+\operatorname{ar}\left(\|^{\mathrm{gm}} B Y X D\right) \tag{5}\\
& =\operatorname{ar}\left(\|^{\mathrm{gm}} A C F G\right)+\operatorname{ar}\left(\|^{\mathrm{gm}} A B M N\right)
\end{align*}
$$

[From (iii), (vi) parts]
Thus, $\operatorname{ar}\left(\|^{\mathrm{gm}} B C E D\right)=\operatorname{ar}\left(\|^{\mathrm{gm}} A B M N\right)+\operatorname{ar}\left(\|^{\mathrm{gm}} A C F G\right)$

mtG BEST SELLING BOOKS FOR CLASS 9

