Heron's Formula

SOLUTIONS

1. Let the sides of the triangle be 3 <i>x</i> , 5 <i>x</i> and 7 <i>x</i> . We are given that Perimeter of the triangle = 300 m $\Rightarrow 3x + 5x + 7x = 300 \Rightarrow 15x = 300 \Rightarrow x = 20$ ∴ The lengths of the three sides are 3 × 20 m, 5 × 20 m and 7 × 20 m <i>i.e.</i> , 60 m, 100 m, 140 m. ∴ Semi-perimeter, $s = \frac{300}{2}$ m = 150 m Area of the triangle
$= \sqrt{150 \times (150 - 60) \times (150 - 100) \times (150 - 140)}$
$=\sqrt{150\times90\times50\times10}=\sqrt{15\times9\times5\times10000}$
$= 15 \times 100 \times \sqrt{3} = 1500\sqrt{3} \text{ m}^2$
2. Let each side of the triangle be <i>a</i> . ∴ Perimeter = $3a = 60$ cm $\Rightarrow a = 20$ cm
\therefore Semi-perimeter, $s = \frac{60}{2} = 30 \text{ cm}$
Area of triangle = $\sqrt{s(s-a)(s-a)(s-a)}$
$=\sqrt{30(30-20)(30-20)(30-20)}$
$=\sqrt{30\times10\times10\times10}=100\sqrt{3}\mathrm{cm}^2$
3. Sides of triangle are <i>a</i> = 15 cm, <i>b</i> = 15 cm and <i>c</i> = 12 cm ∴ Semi-perimeter, $s = \frac{a+b+c}{2} = \frac{15+15+12}{2} = 21$ cm
$\therefore \text{Area of triangle} = \sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{21(21-15)(21-15)(21-12)}$
$=\sqrt{21\times6\times6\times9} = 18\sqrt{21} \text{ cm}^2$
4. Let $AB = c = 60$ m, $BC = a = 56$ m and $AC = b = 52$ m.
\therefore Semi-perimeter, $s = \frac{a+b+c}{2}$
$=\frac{60+56+52}{2}=\frac{168}{2}=84\mathrm{m}$
Area of triangular park = $\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{84(84-56)(84-52)(84-60)}$
$=\sqrt{84\times28\times32\times24} = \sqrt{12\times7\times12\times2\times7\times4\times16\times2}$
$= 12 \times 7 \times 4 \times 4 = 1344 \text{ m}^2$
Also, area of park = $\frac{1}{2} \times BC \times AP$
$\Rightarrow 1344 = \frac{1}{2} \times 56 \times AP \Rightarrow AP = \frac{1344}{28} = 48 \text{ m.}$
\therefore The distance between the lamp posts at <i>A</i> and <i>P</i> is 48 m.

TRY YOURSELF

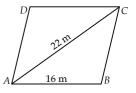
5. Let *AB* be the shortest side. $\therefore AB = a \text{ units}, BC = \frac{3}{2}a \text{ units and } AC = 2a \text{ units}$ $\therefore \text{ Semi-perimeter}, s = \frac{AB + BC + CA}{2}$ $= \frac{a + \frac{3}{2}a + 2a}{2} = \frac{9}{4}a \text{ units}$ $Now, s - (AB) = \frac{9}{4}a - a = \frac{5}{4}a$ $s - (BC) = \frac{9}{4}a - \frac{3}{2}a = \frac{3}{4}a$ $s - (CA) = \frac{9}{4}a - 2a = \frac{1}{4}a$ $\therefore \text{ Area of } \Delta ABC = \sqrt{\frac{9}{4}a \times \frac{5}{4}a \times \frac{3}{4}a \times \frac{1}{4}a}$ $= \sqrt{\frac{9 \times 3 \times 5}{4 \times 4 \times 4}a^4} = \frac{3\sqrt{15}}{4 \times 4}a^2$ $= \frac{3\sqrt{15}}{16}a^2 \text{ sq. units}$ 6. Diagonal *AC* divides the

CHAPTER

6. Diagonal AC divides the quadrilateral ABCD into two triangles $\triangle ACD$ and $\triangle ABC$. For $\triangle ACD$, a = 6 m, b = 6 m, c = 6 m. Semi-perimeter, $s = \frac{6+6+6}{2} = 9$ m Area of $\triangle ACD$ = $\sqrt{9 \times (9-6) \times (9-6) \times (9-6)} = 9\sqrt{3}$ m² For $\triangle ABC$, a = 5 m, b = 5 m and c = 6 m. Semi-perimeter, $s = \frac{5+5+6}{2} = 8$ m Area of $\triangle ABC = \sqrt{s(s-a)(s-b)(s-c)}$ = $\sqrt{8(8-5)(8-5)(8-6)}$ = $\sqrt{8 \times 3 \times 3 \times 2} = \sqrt{16 \times 9} = 12$ m²

= $\sqrt{8 \times 3 \times 3 \times 2} = \sqrt{16 \times 9} = 12 \text{ m}^2$ Thus, the area of the quadrilateral *ABCD* = Area of $\triangle ABC$ + Area of $\triangle ACD$ = $(12 + 9\sqrt{3})\text{m}^2 = 3(4 + 3\sqrt{3})\text{m}^2$

7. Let *ABCD* be the rhombus having sides AB = BC = CD = DA = aPerimeter of rhombus = 64 m $\Rightarrow 4a = 64 \text{ m} \Rightarrow a = 16 \text{ m}$ In $\triangle ABC$, a = 16 m, b = 16 m, c = 22 m



MtG 100 PERCENT Mathematics Class-9

Semi-perimeter, $s = \frac{a+b+c}{2} = \frac{16+16+22}{2} = \frac{54}{2} = 27 \text{ m}$ Area of $\triangle ABC = \sqrt{s(s-a)(s-b)(s-c)}$ $= \sqrt{27(27-16)(27-16)(27-22)}$ $= \sqrt{27 \times 11 \times 11 \times 5} = 33\sqrt{15} \text{ m}^2$

Since diagonal divides the rhombus into two equal triangles.

 $\therefore \quad \text{Area of rhombus } ABCD = 2 \times \text{Area of } \Delta ABC$ $= 2 \times 33\sqrt{15} = 66\sqrt{15} \text{ m}^2$

8. In a conical tent, pieces are in the form of isosceles triangle, whose sides are 6 m, 13 m, 13 m.

- Semi-perimeter of triangle, $s = \frac{6+13+13}{2} = \frac{32}{2} = 16 \text{ m}$
- : Area of triangle = $\sqrt{s(s-a)(s-b)(s-c)}$
- $=\sqrt{16(16-6)(16-13)(16-13)}$
- $=\sqrt{16\times10\times3\times3}=12\sqrt{10} \text{ m}^2$

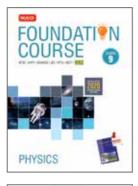
Thus, area of one red colour triangular piece is $12\sqrt{10}$ m². Since, tent is made of 14 pieces of two colours. So, number of triangular pieces of red colour is 7.

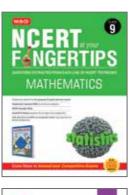
Hence, cloth of red colour required to make the conical tent = $7 \times 12\sqrt{10} = 84\sqrt{10} \text{ m}^2$.

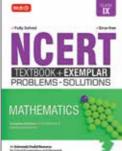
9. Through *C*, Draw
$$CF \perp AB$$
 D 18 m C
and $CE \parallel AD$
 $\therefore AE = 18 \text{ m}$
and $CE = 20 \text{ m}$
and $BE = 42 \text{ m}$
 $In \Delta BCE, a = 20 \text{ m}, b = 34 \text{ m}, c = 42 \text{ m}$
semi-perimeter $s = \frac{20 + 34 + 42}{2} = \frac{96}{2} = 48 \text{ m}$
Now, area of $\Delta EBC = \sqrt{48(48 - 20)(48 - 34)(48 - 42)}$
 $= \sqrt{48 \times 28 \times 14 \times 6} = 336 \text{ m}^2$
Also, area of $\Delta BEC = \frac{1}{2}$ (base × height)
 $\Rightarrow \frac{1}{2} \times 42 \times CF = 336 \Rightarrow 21 \times CF = 336$
 $\Rightarrow CF = \frac{336}{21} = 16 \text{ m}$
Now, area of parallelogram $AECD = AE \times CF$
 $= 18 \times 16 = 288 \text{ m}^2$
 \therefore Area of ground = Area of ΔBCE + Area of parallelogram $AECD = 336 + 288 = 624 \text{ m}^2$

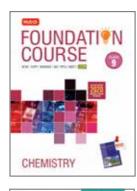
- Cost of cementing the ground at ₹ 15 per m²
- = ₹ 15 × 624
- = ₹ 9360

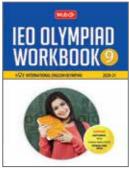
mtg BEST SELLING BOOKS FOR CLASS 9

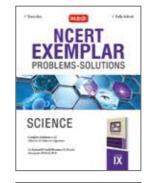


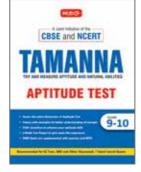


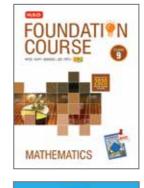


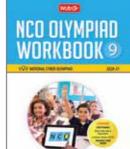


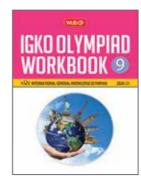


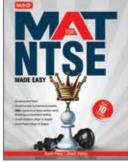


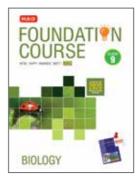




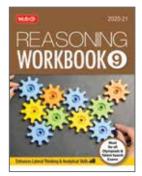












Visit www.mtg.in for complete information