Coordinate Geometry

TRY YOURSELF

SOLUTIONS

1. (i) The position of lily sapling can be written as (9, 2).

(ii) The position of hibiscus sapling can be written as (4, 7).

2. Given, *A*(3, 4) and *B*(-2, 5)

Abscissa of A = 3 and abscissa of B = -2

 $\therefore \text{ Abscissa of } A - \text{ Abscissa of } B = 3 - (-2) = 3 + 2 = 5$

3. (i) In point (3, 0), *y*-coordinate is zero, so it lies on *x*-axis.

(ii) In point (0, 4), *x*-coordinate is zero, so it lies on *y*-axis.

4. Since, (x + 3, 6) = (3, y + 1)

So, their corresponding abscissa and ordinates are equal. \therefore x + 3 = 3 and 6 = y + 1

 $\Rightarrow x = 3 - 3 = 0 \text{ and } y = 6 - 1 = 5$

 $\therefore \quad \text{Coordinate } (x, y) = (0, 5)$

5. Since the ordinate of any point on *x*-axis is zero.

 \therefore The ordinate of *C*(3, *a* – 5) is zero.

i.e., $a - 5 = 0 \implies a = 5$

6. (i) Ordered pair of the type (-, +) lies in II quadrant. Thus the point (-3, 2) lies in quadrant II.

(ii) Ordered pair of the type (-, -) lies in III quadrant. Thus, the point (-2, -7) lies in quadrant III.

(iii) Ordered pair of the type (+, -) lies in IV quadrant. Thus, the point (3, -4) lies in quadrant IV.

(iv) Ordered pair of the type (+, +) lies in I quadrant. Thus, the pair (8, 3) lies in quadrant I.

7. Point *A* lies on *x*-axis at a distance of 5 units from origin along +ve direction of *x*-axis. So, *x*-coordinate of A = 5 and *y*-coordinate of A = 0.

 \therefore The coordinates of *A* are (5, 0).

Point *B* lies in Ist quadrant.

Perpendicular distance of *B* from *y*-axis is 5 units.

So, the *x*-coordinate of B = 5.

Also, perpendicular distance of *B* from *x*-axis is 3 units. So, the *y*-coordinate of B = 3

 \therefore The coordinates of *B* are (5, 3).

Similarly, *x*-coordinate of C = -2 and *y*-coordinate of C = 4.

 \therefore The coordinates of *C* are (-2, 4).

As point *D* lies on *y*-axis at a distance of 3 units from origin along negative direction of *y*-axis.

So, *x*-coordinate of D = 0 and *y*-coordinate of D = -3.

 \therefore The coordinates of *D* are (0, -3).

8. Here *P* lies in quadrant I, *Q* lies in quadrant-II, *R* lies in quadrant-III, *S* lies in quadrant-IV.

(i) Also abscissa of a point is its distance from *y*-axis.

So, abscissa of P = 1, abscissa of Q = -3.

Abscissa of R = -8 and abscissa of S = 8

(ii) As ordinate of a point is its distance from *x*-axis.

So, ordinate of P = 3, ordinate of Q = 5.

Ordinate of R = -5, ordinate of S = -7

(iii) Coordinates of *P* are (1, 3)

Coordinates of Q are (-3, 5)

Coordinates of *R* are (-8, -5)

Coordinates of S are (8, -7)

9. (i) *x*-coordinate of A = 3 and *y*-coordinate of A = 0.

Therefore, the coordinates of A are (3, 0).

(ii) *x*-coordinate of B = 0 and *y*-coordinate of B = 2.

Therefore, the coordinates of B are (0, 2).

(iii) *x*-coordinate of C = -4 and *y*-coordinate of C = 0

Therefore, the coordinates of C are (-4, 0).

(iv) *x*-coordinate of D = 0 and *y*-coordinate of D = -3.5. Therefore, the coordinates of D are (0, -3.5).

10. (i) *x*-coordinate of A = -4 and *y*-coordinate of A = 3

 \therefore The coordinates of *A* are (-4, 3)

x-coordinate of C = 6 and *y*-coordinate of C = 0.

 \therefore The coordinates of *C* are (6, 0)

x-coordinate of D = -3 and *y*-coordinate of D = -4

 \therefore The coordinates of *D* are (-3, -4)

x-coordinate of F = 6 and *y*-coordinate of F = -3

- \therefore The coordinates of *F* are (6, -3).
- (ii) Abscissa of B = 5.
- (iii) The point identified by the coordinates (3, -6) is *E*.

11. Let *X'OX* and *Y'OY* be the coordinate axes. Then the given points can be plotted as given below.

MtG 100 PERCENT Mathematics Class-9

12. Let *X'OX* and *Y'OY* be the coordinate axes. Then the given points can be plotted as given below.

D(2, 2)

3

4 5 6

C(5, -4)

2

B(0, -3)

The figure thus formed is a quadrilateral.

E(-3, 2

-2

A(-6,

Here it is clear that points *P* and *R* lie on *y*-axis.

14. Let *X*′*OX* and *Y*′*OY* be the coordinate axes. Then the

given points can be plotted as given below :

 \therefore The coordinates of the vertex *C* are (-2, -4).

15. Let *X'OX* and *Y'OY* be the coordinate axes. Then the

given points can be plotted as given below.

Thus, from the graph it is clear that the amount after 12 years is \gtrless 360.

mtg BEST SELLING BOOKS FOR CLASS 9

Visit www.mtg.in for complete information