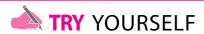
Triangles

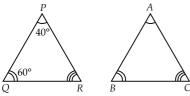


SOLUTIONS

No. We have, $\triangle ABC \cong \triangle PQR$

As we know, two triangles are congruent, if the sides and angles of one triangle are equal to the corresponding sides and angles of other triangle.

 \therefore $\angle ABC = \angle PQR, \angle BCA = \angle QRP, \angle CAB = \angle RPQ$ Thus, it is not true to say that $\angle BCA = \angle PQR$.



We have, $\triangle PQR \cong \triangle ABC$

$$\therefore$$
 $\angle R = \angle C$

[By C.P.C.T.]

$$\Rightarrow$$
 $\angle R = 180^{\circ} - \angle P - \angle Q$

[By angle sum property of ΔPQR]

$$\Rightarrow$$
 $\angle C = 180^{\circ} - 40^{\circ} - 60^{\circ} = 80^{\circ} \ [\because \angle P = 40^{\circ}, \angle Q = 60^{\circ}]$

$$\Rightarrow$$
 $\angle C = 80^{\circ}$

3. In
$$\triangle ABC$$
, $AB = AC$

[Given]

$$\Rightarrow \frac{1}{2}AB = \frac{1}{2}AC$$

$$\Rightarrow AE = AD$$

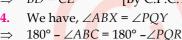
[:D] is the mid-point of AC and E

is the mid-point of AB

Now, in $\triangle ABD$ and $\triangle ACE$,

AB = AC[Given] $\angle A = \angle A$ [Common] AD = AE[Proved above]

 $\triangle ABD \cong \triangle ACE$ [By SAS congruence] BD = CE[By C.P.C.T.]



 $[:: \angle ABX + \angle ABC = 180^{\circ} \text{ and }$

$$\angle PQY + \angle PQR = 180^{\circ} \text{ (Linear Pair)}$$

 $\Rightarrow \angle ABC = \angle PQR$...(i)

In $\triangle ABC$ and $\triangle PQR$,

AB = PQ[Given] $\angle ABC = \angle PQR$ [From (i)] BC = QR[Given] (By SAS congruence) $\Delta ABC \cong \Delta PQR$

Given a line $l \perp AB$. Let it passes through $l \not \blacktriangle_D$ C which is the mid-point of AB. To show that PA = PB.

Consider ΔPCA and ΔPCB . We have, AC = BC

[: C is the mid-point of AB]

$$\angle PCA = \angle PCB = 90^{\circ}$$

[:: $l \perp AB$]

$$PC = PC$$

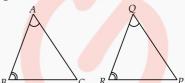
[Common]

$$\therefore \quad \Delta PCA \cong \Delta PCB$$

[By SAS congruence] [By C.P.C.T.]

$$\Rightarrow PA = PB$$

We have given, 6.



In $\triangle ABC$ and $\triangle PQR$, $\angle A = \angle Q$ and $\angle B = \angle R$

Since, the sides AB and QR are included between equal angles. Thus, the side QR of ΔPQR should be equal to side AB of $\triangle ABC$ such that $\triangle ABC \cong \triangle QRP$, by ASA congruence rule.

In $\triangle ABD$ and $\triangle CBE$

 $\triangle ABD \cong \triangle CBE$

$$\angle A = \angle C$$
 [Given]
 $AB = BC$ [Given]
 $\angle B = \angle B$ [Common]

∴
$$\triangle ABD \cong \triangle CBE$$
 [By ASA congruence]
8. Given AC is bisector of $\angle A$ and $\angle C$.

$$\therefore \angle BAC = \angle DAC \text{ and } \angle BCA = \angle DCA \qquad \dots (i)$$

In $\triangle ABC$ and $\triangle ADC$,

$$\angle BAC = \angle DAC$$
 [From (i)]
 $\angle BCA = \angle DCA$ [From (i)]
 $AC = AC$ [Common]
∴ $\triangle ABC \cong \triangle ADC$ [By ASA congruence]
⇒ $AB = AD$ [By C.P.C.T.]
∴ $AB = 5$ cm [∴ $AD = 5$ cm]

9. Let each of the base angle of an isosceles triangle be x° . We have vertical angle = 100°

So,
$$100^{\circ} + x^{\circ} + x^{\circ} = 180^{\circ}$$

[Angle sum property of a triangle]

$$\Rightarrow 2x^{\circ} = 180^{\circ} - 100^{\circ} = 80^{\circ}$$

 $\Rightarrow x = 40^{\circ}$

Each base angle measures 40°.

10. Since, AE is the bisector of $\angle CAD$

$$\therefore$$
 $\angle 1 = \angle 2$...(i)

Since, $AE \mid\mid BC$ and AC is the transversal

$$\therefore$$
 $\angle 1 = \angle C$ [Alternate angles] ...(ii)

Since, $AE \mid\mid BC$ and AB is the transversal

$$\therefore$$
 $\angle 2 = \angle B$ [Corresponding angles] ...(iii)

From (i), (ii) and (iii), we get

 $\angle B = \angle C$

$$\Rightarrow$$
 AC = AB [Sides opposite to equal angles of a

triangle are equal]

 $\triangle ABC$ is isosceles.

11. In $\triangle ABD$ and $\triangle ACD$, $\angle BAD = \angle CAD$ [:: AD is the bisector of $\angle A$] AD = AD [Common] $\angle ADB = \angle ADC = 90^{\circ}$ [Given] So, $\triangle ABD \cong \triangle ACD$ [By ASA congruence] ⇒ $AB = AC$ [By C.P.C.T.] ∴ $\triangle ABC$ is an isosceles triangle.	BC = PR [Given] ∴ $\triangle ABC \cong \triangle QPR$ [By RHS congruence] ⇒ $AC = QR$ [By C.P.C.T.](i) Also, $BC = PR$ [Given] ⇒ $BC + CR = PR + CR \Rightarrow BR = CP$ (ii) Now, in $\triangle ACP$ and $\triangle QRB$, AC = QR [From (i)]
12. In $\triangle ADC$ and $\triangle CBA$ $CD = AB$ $AD = CB$ $CA = CA$ $\therefore \triangle ADC \cong \triangle CBA$ [Given] [Given] [Common] [Common]	$\angle ACP = \angle QRB$ [Each equals 90°] CP = RB [From (ii)] $\therefore \Delta ACP \cong \Delta QRB$ [By SAS congruence] 16. In ΔDAC , AD = AC [Given]
13. Given, $PA = PB$ and $QA = QB$ In ΔPAQ and ΔPBQ AP = BP [Given]	So, $\angle ACD = \angle ADC$ [Angles opposite to equal sides of a triangle are equal] Now, $\angle ADC$ is an exterior angle for $\triangle ABD$.
AQ = BQ [Given] PQ = PQ [Common] So, $\Delta PAQ \cong \Delta PBQ$ [By SSS congruence] Therefore, $\angle APQ = \angle BPQ$ [By C.P.C.T.]	So, $\angle ADC > \angle ABD$ $\Rightarrow \angle ACD > \angle ABD$ or $\angle ACB > \angle ABC$ So, $AB > AC$ [Side opposite to larger angle is longer]
Now, in $\triangle PAC$ and $\triangle PBC$, AP = BP [Given]	or $AB > AD$ [:: $AD = AC$] 17. In $\triangle PQR$, we have
$\angle APC = \angle BPC$ [: $\angle APQ = \angle BPQ$ (Proved above)] PC = PC [Common] So, $\triangle PAC \cong \triangle PBC$ [By SAS congruence]	PQ > PR [Given] ⇒ $\angle PRQ > PQR$ [Angle opposite to longer side of a triangle is greater]
Therefore, $AC = BC$ [By C.P.C.T.](i) and $\angle ACP = \angle BCP$ [By C.P.C.T.] Also, $\angle ACP + \angle BCP = 180^{\circ}$ [Linear pair]	$\Rightarrow \frac{1}{2} \angle PRQ > \frac{1}{2} \angle PQR$ $\Rightarrow \angle SRQ > \angle SQR$
$\Rightarrow 2\angle ACP = 180^{\circ} \Rightarrow \angle ACP = 90^{\circ}$ (ii) From (i) and (ii), <i>PQ</i> is the perpendicular bisector of <i>AB</i> . 14. In Δ <i>QLM</i> and Δ <i>RNM</i> , we have	[RS and QS are bisectors of $\angle PRQ$ and $\angle PQR$ respectively] $\Rightarrow SQ > SR$ [Side opposite to greater angle is longer]
QM = RM [Given] LM = NM [Given] $\angle QLM = \angle RNM$ [Each equals 90°]	18. Let in $\triangle ABC$, AD , BE and CF are three altitudes. In right angled $\triangle ABD$, AB is hypotenuse. $\Rightarrow AB > AD$ (i)
∴ $\triangle QLM \cong \triangle RNM$ [By RHS congruence] ⇒ $\angle Q = \angle R$ [By C.P.C.T.] ⇒ $PR = PQ$ [Sides opposite to equal angles of a triangle are equal]	Similarly, in right angled ΔBEC and ΔCFA , we have $BC > BE$ (ii)
15. In $\triangle ABC$ and $\triangle QPR$, $\angle ACB = \angle QRP$ [Each equals 90°] AB = PQ [Given]	and $CA > CF$ (iii) $\frac{P}{B}$ $\frac{1}{D}$ C Adding (i), (ii) and (iii), we get $AB + BC + CA > AD + BE + CF$ i.e., Perimeter of $\triangle ABC > (AD + BE + CF)$.

MtG BEST SELLING BOOKS FOR CLASS 9

