Quadrilaterals

TRY YOURSELF

SOLUTIONS

1.	Let the angles of the quadrilateral be x , $2x$, $4x$ and	
5 <i>x</i> .		

Since sum of the angles of a quadrilateral is 360°.

- $x + 2x + 4x + 5x = 360^{\circ}$ *.*..
- $12x = 360^\circ \implies x = 30^\circ$ \Rightarrow
- $2x = 2 \times 30^{\circ} = 60^{\circ}$ *.*..
- $4x = 4 \times 30^{\circ} = 120^{\circ}$ and $5x = 5 \times 30^{\circ} = 150^{\circ}$
- Required angles are 30°, 60°, 120° and 150°. *.*..
- 2. Since sum of the angles of a quadrilateral is 360°.
- $(x + 20)^{\circ} + (x 20)^{\circ} + (2x + 5)^{\circ} + (2x 5)^{\circ} = 360^{\circ}$ *:*..
- $6x = 360 \implies x = 60$ \Rightarrow

3. No. As we know, the sum of all the angles of a quadrilateral is 360°, so a quadrilateral can have maximum of three obtuse angles.

Since, ABCD is a parallelogram. 4.

Therefore, $AD \parallel BC$.

Now, *AD*||*BC* and transversal AB intersects them at A and B respectively.

 $\angle A + \angle B = 180^{\circ}$ *.*..

[Interior angles on the same side of the transversal] Similarly, we can prove that

 $\angle B + \angle C = 180^\circ$, $\angle C + \angle D = 180^\circ$ and $\angle D + \angle A = 180^\circ$.

- 5. In quadrilateral ABCD, $AB \parallel DC$ $[l \parallel m \text{ (Given)}] \dots (i)$ AD || BC $[p \parallel q \text{ (Given)}] \dots \text{(ii)}$
- ... From (i) and (ii), ABCD is a parallelogram.
- $\angle ABC + \angle BCD = 180^{\circ}$

[Sum of consecutive angles of a parallelogram is 180°]

 $\mathbb{Z}BCD = 108^{\circ} (Given)$ $\Rightarrow \angle ABC + 108^\circ = 180^\circ$ $\angle ABC = 180^{\circ} - 108^{\circ} = 72^{\circ}$ \Rightarrow

Now,
$$\angle DAB = \angle BCD = 108^\circ$$
 and $\angle ADC = \angle ABC = 72^\circ$

Since, diagonals of a 6. parallelogram bisect each other. Therefore, O is mid-point of AC and BD.

:.
$$OC = \frac{1}{2}AC = \frac{1}{2} \times 6.8 = 3.4 \text{ cm} [AC = 6.8 \text{ cm} (\text{Given})]$$

And
$$OD = \frac{1}{2}BD = \frac{1}{2} \times 5.6 = 2.8 \text{ cm} [BD = 5.6 \text{ cm} (Given)]$$

In parallelogram PQRS, PQ = RS7. [Opposite sides of a parallelogram] Also, we have PM = RN[Given]

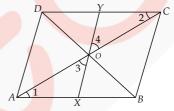
$$\therefore PQ - PM = RS - RN$$

$$\Rightarrow MQ = SN \qquad \dots (i)$$

Now, $MQ \parallel SN$ [:: PQRS is a parallelogram $\Rightarrow PQ \parallel SR$]

- ...(ii)
- From (i) and (ii), we have *.*.. MQNS is a parallelogram
- MS || NQ [Opposite sides of a parallelogram] *.*..
- 8. Since *ABCD* is a parallelogram.
- $AB \parallel DC$ *.*..

 $AB \parallel DC$ and transversal AC intersects them at A •.• and C.



 $\angle 1 = \angle 2$ [Alternate interior angles] ...(i) • Now, in $\triangle OAX$ and $\triangle OCY$, we have

	,	
	∠1 = ∠2	[From (i)]
	OA = OC	[Diagonals of a parallelogram
		bisect each other]
	$\angle 3 = \angle 4$	[Vertically opposite angles]
	$\Delta OAX \cong \Delta OCY$	[By ASA congruence]
<i>.</i>	OX = OY	[By C.P.C.T.]
9.	Since $\angle SRQ + \angle QRT$	= 180° [Linear pair]
\Rightarrow	$\angle SRQ + 72^{\circ} = 180^{\circ}$	[:: $\angle QRT = 72^{\circ}$ (Given)]
\Rightarrow	$\angle SRQ = 180^{\circ} - 72^{\circ} =$	108°
	1	

But
$$\angle SRP = \frac{1}{2} \angle SRQ$$

[:: Diagonal bisects angle at vertex]

$$\Rightarrow \ \ \angle SRP = \frac{1}{2} \times 108^\circ = 54^\circ \qquad \qquad \dots (i)$$

In $\triangle SPR$, SP = SR

 \Rightarrow

Now,

M 0

$$\Rightarrow \angle SPR = \angle SRP$$

[Angles opposite to equal sides are equal] $\angle SPR = 54^{\circ}$ [From (i)]

10. In rectangle *ABCD*, $\angle BOC = 50^{\circ}$ And $\angle AOD = \angle BOC$

[Vertically opposite angles] $\angle AOD = 50^{\circ}$ *:*.. ...(i)

we know that diagonals of
$$D$$

a rectangle are equal and bisect each other.

$$\therefore OA = OD$$

$$\Rightarrow \angle 1 = \angle 2 \qquad \dots (ii)$$
[Angles opposite to equal sides are equal]

[Angles opposite to equal sides are equal]

150°

MtG 100 PERCENT Mathematics Class-9

Now, in $\triangle ODA$, we have

 $\angle 1 + \angle 2 + \angle AOD = 180^{\circ}$

- $\angle 2 + \angle 2 + 50^{\circ} = 180^{\circ}$ \Rightarrow
- $2\angle 2 = 180^{\circ} 50^{\circ} = 130^{\circ}$ \Rightarrow
- $\angle 2 = 65^{\circ}$ \Rightarrow
- $\angle ODA = 65^{\circ}$ ÷.
- **11.** Let *ABCD* be a rhombus.

[Sides of a rhombus are equal]

AB = BC = CD = DA÷.

AV $\sum B$

Now, in $\triangle AOD$ and $\triangle COD$, OA = OC

[Diagonals of a parallelogram bisect each other and rhombus is a parallelogram] OD = OD[Common]

AD = CDTherefore, $\triangle AOD \cong \triangle COD$ [By SSS congruence] $\angle AOD = \angle COD$ [By C.P.C.T.] But, $\angle AOD + \angle COD = 180^{\circ}$ [Linear pair] *.*.. 2∠AOD = 180° $\angle AOD = 90^{\circ}$ \Rightarrow

So, the diagonals of a rhombus are perpendicular to each other.

12. In $\triangle PQR$, since X and Y are the mid-points of sides PQ and PR respectively. Therefore, by mid-point theorem, we have

$$XY \parallel QR \text{ and } XY = \frac{1}{2}QR$$

$$\Rightarrow XY = \frac{1}{2} \times 10 \qquad [QR = 10 \text{ cm (Given)}]$$

$$\Rightarrow XY = 5 \text{ cm}$$

13. In $\triangle XYZ$, L and M are mid-points of XY and XZ respectively. Therefore, by mid-point theorem, we have

$$LM = \frac{1}{2} YZ \qquad \dots (i)$$

Now, since *M* and *N* are mid-points of XZ and YZ respectively.

$$\therefore MN = \frac{1}{2}XY \qquad \dots (ii)$$

And *N* and *L* are mid-points of *YZ* and *XY* respectively.

$$\therefore \quad NL = \frac{1}{2}XZ \qquad \qquad \dots (iii)$$

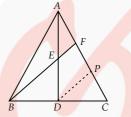
Now, perimeter of $\Delta LMN = LM + MN + NL$

1

$$= \frac{1}{2}YZ + \frac{1}{2}XY + \frac{1}{2}XZ \qquad [Using (i), (ii) and (iii)]$$

= $\frac{1}{2} \times 5.6 + \frac{1}{2} \times 4.4 + \frac{1}{2} \times 4.8$
[$\because YZ = 5.6 \text{ cm}, XY = 4.4 \text{ cm}, XZ = 4.8 \text{ cm} (Given)]$
= $2.8 + 2.2 + 2.4 = 7.4 \text{ cm}$

14. We have, a $\triangle ABC$ in which AD is a median and E is the mid-point of AD. Let us draw $DP \parallel BF$.



Now in $\triangle ADP$, *E* is the mid-point of *AD* and *EF* || *DP*. *F* is mid-point of *AP*. *.*..

 \Rightarrow AF = FP [By converse of mid-point theorem] Now in $\triangle FBC$, *D* is mid-point of *BC* and *DP* || *BF*.

P is mid-point of *FC*. ÷

FP = PC[By converse of mid-point theorem] \rightarrow Hence, AF = FP = PC

$$\therefore AF = \frac{1}{3}AC$$

15. Since, D and E are mid-points of BC and AC respectively. Therefore, by mid-point theorem, we have

$$DE = \frac{1}{2}AB \qquad \dots (i)$$

Now, E and F are the mid-points of AC and AB respectively.

$$\therefore EF = \frac{1}{2}BC \qquad \dots (ii)$$

And F and D are the mid-points of AB are BC respectively.

$$\therefore \quad FD = \frac{1}{2}AC \qquad \dots (iii)$$

Now, $\triangle ABC$ is an equilateral triangle

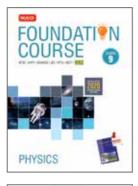
$$\therefore AB = BC = CA$$

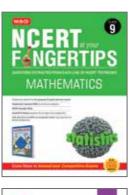
$$\Rightarrow \frac{1}{2}AB = \frac{1}{2}BC = \frac{1}{2}CA$$

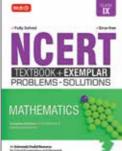
 \Rightarrow DE = EF = FD [Using (i), (ii) and (iii)] Hence, ΔDEF is an equilateral triangle.

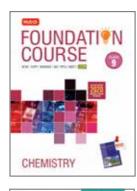
[Using (i) and (ii)]

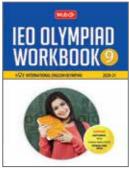
mtg BEST SELLING BOOKS FOR CLASS 9

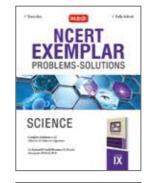


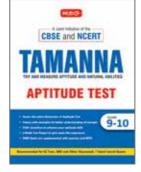


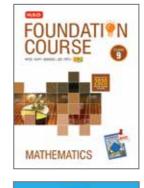


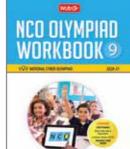


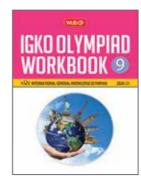


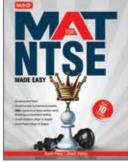


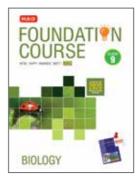




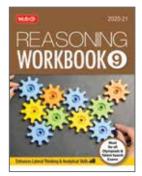












Visit www.mtg.in for complete information