Areas of Parallelograms and Triangles

CHAPTER

TRY YOURSELF

SOLUTIONS

1. Figures (i) and (iv) lie on same base and between the same parallels.

	Common base	Two parallels
Figure (i)	SP	SP and QR
Figure (iv)	DC	DC and PB

2. We know, area of $||^{gm}$ = Base × Height

 $\therefore \quad ar (\parallel^{gm} ABCD) = AB \times DL = (AD \times \bar{B}M)$

 $\therefore \quad 12 \times 6 = AD \times 8 \Rightarrow AD = 72/8 \text{ cm} = 9 \text{ cm}$

3. Since, $\triangle APD$ and parallelogram *ABCD* are on the same base *AD* and between the same parallels *AD* and *BC*.

$$\therefore ar (\Delta APD) = \frac{1}{2} ar(||^{\text{gm}} ABCD) = \left(\frac{1}{2} \times 80\right) \text{ cm}^2 = 40 \text{ cm}^2$$
$$[\because ar (||^{\text{gm}} ABCD) = 80 \text{ cm}^2]$$

4. Join *CD*.

Since, *D* is the mid-point of *AB*. So, *CD* is the median of $\triangle ABC$.

 $\therefore \quad ar (\Delta BCD) = \frac{1}{2} ar (\Delta ABC) \quad [\because Median of a triangle]$

divides it into two triangles of equal area.]

$$\Rightarrow ar(\Delta BPD) + ar(\Delta DPC) = \frac{1}{2}ar(\Delta ABC) \qquad \dots (i)$$

Since, ΔDPQ and ΔDPC are on the same base DP and between the same parallels DP and CQ. \therefore ar (ΔDPQ) = ar (ΔDPC) ...(ii) From (i) and (ii), we get

$$ar (\Delta BPD) + ar (\Delta DPQ) = \frac{1}{2} ar (\Delta ABC)$$

 $\therefore \quad ar (\Delta BPQ) = \frac{1}{2} ar (\Delta ABC)$

Hence proved.

5. Since, AD is a median of $\triangle ABC$.

$$\therefore \quad ar(\Delta ABD) = \frac{1}{2}ar(\Delta ABC)$$

[∵ Median of a triangle divides it into two triangles of equal area.]

$$=\frac{1}{2} \times 96 \quad [\because ar \ (\Delta ABC) = 96 \ \mathrm{cm}^2]$$

 $= 48 \text{ cm}^2$

Also, *BP* is a median of $\triangle ABD$.

(: P is the mid-point of AD)

$$ar(\Delta ABP) = \frac{1}{2}ar(\Delta ABD) = \frac{1}{2} \times 48 = 24 \text{ cm}^2$$

6. Given, a parallelogram *PQRS*, where *O* is any point on the diagonal *PR*.

Now, join *SQ* which intersects *PR* at *B*.

As we know, the diagonals of a parallelogram bisect each other, so *B* is the mid-point of *SQ*.

$$\Rightarrow PB$$
 is a median of $\triangle QPS$.

 $\therefore ar (\Delta BPQ) = ar (\Delta BPS) \dots (i) [\because Median of a triangle divides it into two triangles of equal area] Also,$ *OB* $is the median of <math>\Delta OSO$

$$\therefore ar (\Delta OBQ) = ar (\Delta OBS) \qquad ...(ii)$$

Adding (i) and (ii), we get
$$ar(\Delta BPQ) + ar (\Delta OBQ) = ar (\Delta BPS) + ar (\Delta OBS)$$

$$\Rightarrow ar (\Delta PQO) = ar (\Delta PSO)$$

Hence proved.

mtg BEST SELLING BOOKS FOR CLASS 9

Visit www.mtg.in for complete information