Constructions

SOLUTIONS

- 1. (c) : In the given figure, $B_3P || B_5C$ and QP || AC.
- $\therefore \quad \Delta QBP \sim \Delta ABC \text{ and } \Delta BPB_3 \sim \Delta BCB_5.$

$$\Rightarrow \quad \frac{BQ}{AB} = \frac{BP}{BC} = \frac{QP}{AC} \qquad \dots (i)$$

and $\frac{BP}{BC} = \frac{B_3P}{B_5C} = \frac{BB_3}{BB_5} = \frac{3}{5}$...(ii)

From (i) and (ii), we have

 $\frac{BQ}{AB} = \frac{BP}{BC} = \frac{QP}{AC} = \frac{3}{5} \quad \therefore \quad \frac{x}{y} = \frac{3}{5}$

2. (b) : Two tangents can be drawn to a circle from a point lying outside the circle.

3. (a) : We cannot construct a pair of parallel tangents to a circle from an external point to the circle.

4. (d) : Here, radius is 4 cm. So, d > 4.

Since, there is no value which is greater than 4.

So, a pair of tangents can't be constructed from *P* for all the given values.

5. (d) : Pair of tangents inclined at a reflex angle can't be constructed to a circle.

6. In the given figure, A_3P is parallel to A_5B such that $\angle AA_3P = \angle AA_5B$.

$$\therefore \qquad \frac{AP}{PB} = \frac{AA_3}{A_3A_5} = \frac{3}{2}$$

Hence, AP : PB = 3 : 2.

7. In the given figure, $A_5C \parallel A_6B$

$$\therefore \frac{AC}{CB} = \frac{AA_5}{A_5A_5} = \frac{3}{1}$$

 \therefore The line segment *AB* is divided into two parts in the ratio 5 : 1.

8. From the given figure, it is clear that there are three points at equal distances on AX and there are four points at equal distances on BY. Here, P divides AB on joining A_3B_4 . So, P divides AB internally in the ratio 3 : 4.

9. The given figure is the construction of division of a line segment internally in the ratio 2 : 6.

So, *AX* and *BY* are parallel.

 $\Rightarrow \ \angle ABY = \angle BAX = 30^{\circ}.$

10. The next step is : Join B_8 to *C*.

11. Since, 3 < 3.5 (radius of a circle). So, the point *P* lies inside the circle.

 \therefore It is not possible to construct a pair of tangents from a point *P* situated at a distance of 3 cm from the centre of a circle of radius 3.5 cm.

12. True. Since, the angle between the pair of tangents is always greater than 0° but less than 180°. Hence, we can draw a pair of tangents to a circle inclined at an angle of 170°.

13. Steps of Construction :

Step 1 : Draw *AB* = 7.8 cm.

Step 2 : Draw a ray *AX*, making an acute angle with *AB*. **Step 3** : Locate (5 + 8 =) 13 points *i.e.*, $A_1, A_2, A_3, ..., A_{13}$ on *AX*, so that $AA_1 = A_1A_2 = A_2A_3 = ... = A_{12}A_{13}$. **Step 4** : Join $A_{13}B$.

Step 5 : Through A_5 , draw A_5C parallel to $A_{13}B$, meeting AB at C.

Thus C divides AB in the ratio 5:8

14. Steps of Construction

Step 1 : Draw *AB* of length 8.8 cm and draw a ray *AX* making an acute angle with *AB*.

Step 2 : Locate 9 points $A_1, A_2, A_3, ..., A_9$ on *AX* such that $AA_1 = A_1A_2 = A_2A_3 = ... = A_8A_9$.

Step 3 : Join A_9B .

Step 4 : Through A_5 , draw a line A_5P parallel to A_9B intersecting *AB* at the point *P*.

Thus, *P* is a point on *AB* which divides the line segment *AB* in the ratio 5 : 4.

15. Steps of Construction

Step 1: Draw a line segment AB = 8.1 cm.

Step 2 : Draw a ray *AX* below the line segment *AB* making an acute angle $\angle BAX$.

CHAPTER

Step 3 : Mark 9 points A_1 , A_2 ,, A_9 on AX such that $AA_1 = A_1A_2 = A_2A_3$ and so on.

Step 4 : Join A_9B .

Step 5 : From point A_4 draw a line A_4B' parallel to A_9B which intersects AB at B'.

Thus, *AB* is divided internally in the ratio 4 : 5.

16. Steps of Construction

Step 1: Draw a line segment *AB* of length 7.3 cm. **Step 2**: Draw a ray *AX* making an acute angle with *AB*. Draw another ray *BY* parallel to *AX* by making $\angle ABY$ equal to $\angle BAX$.

Step 3 : Locate 2 points A_1 , A_2 on AX and 5 points B_1 , B_2 , B_3 , B_4 and B_5 on BY such that $AA_1 = A_1A_2 = BB_1 = B_1B_2$ = $B_2B_3 = B_3B_4 = B_4B_5$. **Step 4 :** Join A_2B_5 which intersects AB at P.

Thus, *P* is the point on *AB* which divides the line segment *AB* in the ratio 2 : 5.

 A_{2}

X

17. The given figure is the construction of division of a line segment internally.

 $\therefore AX \parallel BY$

Now, $\angle AOA_5 = \angle BOB_2 = 115^\circ$ [Vertically opposite angles] $\angle OBB_2 = \angle OAA_5 = 22^\circ$ (Alternate angles) In $\triangle BOB_2$, $\angle OB_2B = 180^\circ - (115^\circ + 22^\circ) = 43^\circ$.

18. Steps of Construction

Step 1: Draw a circle with centre *O* and radius 9 cm. **Step 2**: Draw the diameter *POQ*. **Step 3**: Construct $XY \perp OP$ at *P* and $LM \perp OQ$ at *Q*. Thus, *XPY* and *LQM* are the two tangents at *P* and *Q*, respectively, to the circle. Yes, lines $XY \parallel LM$ Since, $\angle OPX + \angle LQO = 180^\circ$

19. Steps of Construction

Step 1 : Draw a circle of radius 5 cm with centre *O*.

Step 2 : At *O*, construct radii *OA* and *OB* such that $\angle AOB = 105^{\circ}$ (180° – 75°).

Step 3: Draw perpendiculars at *A* and *B* such that these perpendiculars intersect at *P*.

Hence, PA and PB are required tangents.

20. Steps of Construction

Step 1: Draw a line segment *AB* = 9.1 cm.

Step 2 : Draw a ray *AX* making an acute angle with *AB*. **Step 3 :** Mark 13 (= 8 + 5) equal points on *AX*, such that $AX_1 = X_1X_2 = \dots = X_{12}X_{13}$.

Step 4 : Join points X_{13} and B.

Step 5 : From point X_5 , draw $X_5C \parallel X_{13}B$, which meets *AB* at *C*.

Thus, *C* divides *AB* in the ratio 5:8. On measuring the two parts, we get AC = 3.5 cm and CB = 5.6 cm.

21. Steps of Construction

Step 1 : Construct a $\triangle ABC$ in which BC = 12 cm, AB = 5 cm and $\angle B = 90^{\circ}$

Step 2 : From *B*, draw an acute $\angle CBY$ downwards.

Step 3 : On ray *BY*, mark three points, B_1 , B_2 and B_3 , such that $BB_1 = B_1B_2 = B_2B_3$. **Step 4** : Join B_3C .

Step 5 : From point B_2 , draw $B_2N | | B_3C$ intersecting *BC* at *N*.

M

Ь

VB

Step 6 : From point *N*, draw *NM* || *CA* intersecting *BA* at *M*. Thus, ΔMBN is the required similar triangle. As two similar triangles have their corresponding angles equal. So, ΔMBN is also a right angled triangle.

22. Steps of Construction

Step 1 : Construct an isosceles $\triangle ABC$ in which base BC = 5 cm and altitude from *A* to *BC* is 3 cm.

Step 2: Draw any ray *BZ* making an acute angle with *BC* on the side opposite to vertex *A* with respect to *BC*.

Step 3 : Locate 3 points B_1 , B_2 and B_3 on BZ such that BB_1 = $B_1B_2 = B_2B_3$.

Step 4: Join B_3C and draw a line through B_2 parallel to B_3C to intersect *BC* at *C*'.

Step 5 : Draw a line through *C'* parallel to the line *CA* to intersect *BA* at *A'*.

Thus, $\Delta A'BC'$ is the required similar triangle.

Thus, $\Delta A'BC'$ is the required similar triangle whose sides are

 $\frac{2}{3}$ of the corresponding sides of triangle *ABC*.

P 9 cm 9 cm M M

7.3 cm

OR

Steps of Construction Step 1 : Construct a $\triangle ABC$ in which BC = 11 cm, $\angle B = 30^{\circ}$ and $\angle A = 105^{\circ}$.

Step 2 : Draw a ray *BZ* making an acute angle with *BC* on the side opposite to vertex *A* with respect to *BC*.

Step 3 : Mark-off five points B_1 , B_2 , B_3 , B_4 and B_5 on *BZ* such that $BB_1 =$ $B_1B_2 = B_2B_3 = B_3B_4 = B_4B_5$. **Step 4 :** Join B_5 to *C* and

draw a line B_3C' parallel to B_5C , intersecting the line segment *BC* at *C*'.

Step 5: Draw a line through *C*' parallel to *CA* intersecting the line segment *AB* at *A*'.

Thus, $\Delta A'BC'$ is the required similar triangle.

23. Steps of Construction

Step 1 : Draw a circle of radius 5 cm. Mark its centre as *O*.

Step 2: Take a point *P* such that *OP* = 10 cm. Join *OP*. **Step 3**: Draw perpendicular bisector of *OP* and let *O'* be its mid-point.

Step 4 : Taking O' as center and O'O or O'P as radius, draw a circle which intersect the given circle at point, A and B.

 \cap

6.8 cm

Step 5 : Join *PA* and *PB*.

Thus, *PA* and *PB* are the required tangents of the circle from the point *P*.

OR

Steps of Construction
Step 1 : Draw PQ of length
6.8 cm.
Step 2 : Draw a ray PX making an acute angle with PQ.

Step 3 : Draw a ray QY

parallel to *PX* by making $\angle PQY$ equal to $\angle QPX$. **Step 4 :** Locate 5 points P_1 , P_2 , P_3 , P_4 and P_5 on *PX* and 3 points Q_1 , Q_2 and Q_3 on *QY* such that $PP_1 = P_1P_2 = P_2P_3 = P_3P_4 = P_4P_5 = QQ_1 = Q_1Q_2 = Q_2Q_3$. **Step 5 :** Join P_5Q_3 which intersects *PQ* at *R*.

Step 5: Join P_5Q_3 which intersects PQ at K Thus $PR \cdot RO = 5 \cdot 3$.

$$\frac{1}{1}$$

Justification :

In ΔPRP_5 and ΔQRQ_3 ,	
$\angle PRP_5 = \angle QRQ_3$	[Vertically opposite angles]
$\angle P_5 PR = \angle Q_3 QR$	[By construction]
$\therefore \Delta PRP_5 \sim \Delta QRQ_3$	[By AA similarity]
$\therefore \frac{PR}{RQ} = \frac{PP_5}{QQ_3}$	
$\therefore \frac{PR}{RQ} = \frac{5}{3}$	$\left[\because \frac{PP_5}{QQ_3} = \frac{5}{3} \right]$

24. Steps of Construction

Step 1: Construct a $\triangle ABC$ in which BC = 8 cm, AB = 7 cm and $\angle ABC = 75^{\circ}$.

Step 2 : Below *BC*, draw a ray *BX* such that $\angle CBX$ is an acute angle.

Step 3 : Along *BX*, mark off seven points B_1 , B_2 , B_3 , B_4 , B_5 , B_6 and B_7 such that

 $BB_1 = B_1B_2 = B_2B_3 = B_3B_4 = B_4B_5 = B_5B_6 = B_6B_7.$ Step 4 : Join B_7C .

Step 5 : From B_5 , draw $B_5D \parallel B_7C$, meeting BC at D. **Step 6 :** From D, draw $ED \parallel AC$, meeting BA at E. Thus, $\triangle EBD$ is the required similar triangle. **Justification :** Since $ED \parallel AC$

25. Steps of Construction

Step 1: Draw a circle of radius 3 cm, taking *O* as centre and *OC* be its radius.

Step 2 : Produce OC to P such

that OP = 7 cm.

Step 3 : Draw perpendicular bisector of *OP* which intersects *OP* at *Q*.

Step 4 : Taking *Q* as centre and radius *QP* or *OQ*, draw a circle which intersects previous circle at points *A* and *B*.

Step 5 : Join *PA* and *PB*. Thus, *PA* and *PB* are the required tangents.

Now, join *OA* to find *PA*.

In $\triangle AOP$, $\angle OAP = 90^{\circ}$ [Angle in semi-circle]

 $\therefore AP^2 = OP^2 - OA^2 = 7^2 - 3^2 = 40$

 \Rightarrow AP = 6.3 cm (approx.)

 \therefore Length of each tangent = 6.3 cm.

OR

Steps of Construction

Step 1: Draw a circle of radius 5 cm, taking *O* as centre and *OC* as its radius.

Step 2 : Produce *OC* to *P* such that *OP* = 13 cm.

Step 3 : Draw perpendicular bisector of *OP* which intersects *OP* at *Q*.

Step 4 : Taking *Q* as centre and radius *QP* or *OQ*, draw a circle which intersect previous circle at points *A* and *B*.

Step 5: Join *PA* and *PB*. Thus, *PA* and *PB* are the required tangents.

MtG 100 PERCENT Mathematics Class-10

Now, join OA to find PA.

[Angle in semi-circle] In $\triangle AOP$, $\angle OAP = 90^{\circ}$:. $AP^2 = OP^2 - OA^2 = 13^2 - 5^2 = 144 \implies AP = 12 \text{ cm}$ Length of each tangent = 12 cm. *.*...

26. Steps of Construction

Step 1: Draw a circle with the help of a circular ring. For finding the centre, draw two chords AB and BC. Draw perpendicular bisector of AB and BC, intersecting each other at point O, 'O' is centre of the circle.

Step 2 : Take a point P outside the circle. Join OP. Step 3: Draw perpendicular bisector of OP, which intersects *OP* at point *M*. **Step 4** : Taking *M* as the centre and OM as radius, draw a circle intersecting

the given circle at points *R* and *Q*.

Step 5 : Join *PQ* and *PR*.

Thus, PQ and PR are the required pair of tangents.

27. Steps of Construction

Here diameter = 8 cm = Radius = 4 cm

Step 1 : Draw a circle of radius 4 cm, taking O as centre and OC be its radius.

Step 2: Produce *OC* to *P* such that *OP* = 11 cm.

Step 3 : Draw perpendicular bisector of OP which intersects OP at Q.

Step 4 : Taking *Q* as centre and radius *QP*, draw a circle which intersect previous circle at points A and B.

Step 5 : Join *PA* and *PB*. Thus, *PA* and *PB* are the required tangents.

Now, join OA.

In $\triangle AOP$, $\angle OAP = 90^{\circ}$ [Angle in semi-circle]

$$\therefore AP^{2} = OP^{2} - OA^{2}$$
$$= 11^{2} - 4^{2} = 105$$

AP = 10.2 cm. (Approx.) \Rightarrow

Length of each tangent = 10.2 cm. *.*..

Justification:

Since, *OP* is a diameter.

 $\angle OAP = 90^\circ = \angle OBP$ *.*... [Angles in semi-circle] Also, OA and OB are radii of the same circle.

AP and PB are tangents to the circle.

28. Steps of Construction

Step 1: Taking a point O as centre, draw a circle of radius 4 cm.

Step 2 : Take two points *P* and *Q* on either side of the extended diameter such that OP = 9 cm and OQ = 6 cm.

Step 3 : Bisect *OP* and *OQ* at M_1 and M_2 respectively. **Step 4** : Draw a circle with M_1 as centre and M_1P as radius to intersect the given circle at T_1 and T_2 . **Step 5 :** Join PT_1 and PT_2 .

Step 6 : Draw a circle with M_2 as centre and M_2Q as radius to intersect the given circle at T_3 and T_4 .

Step 7: Join QT_3 and QT_4 .

Thus, PT_1 , PT_2 , QT_3 and QT_4 are the required tangents.

29. Steps of Construction

Step 1: Draw a circle of radius 3 cm with centre *A*. Step 2 : Mark a point *B* at a distance of 12 cm from the centre A and join AB.

Step 3 : With *B* as centre, draw a circle of radius 5 cm.

Step 4 : Construct the perpendicular bisector, *PQ* of the line segment *AB* which bisects *AB* at *N*.

Step 5 : Along NP, cut off MN = 3.5 cm.

Step 6 : Join *B* and *M*.

Step 7: Draw a perpendicular bisector of BM intersecting BM at C.

Step 8 : Draw a circle with C as centre and radius CM or *CB*, that intersects the bigger circle at T_1 and T_2 .

Step 9 : Join MT_1 and MT_2 .

Thus, MT_1 and MT_2 are the required tangents.

30. Steps of Construction

Step 1 : Draw a $\triangle ABC$ such that AB = 5 cm, BC = 12 cm and $\angle B = 90^{\circ}$.

Step 2 : Draw $BD \perp AC$. Now, bisect BC and let its midpoint be O. With O as centre and OD as radius, draw the circle passing through B, C and D.

Step 4 : Bisect *AO*. Let *M* be the mid-point of *AO*.

Step 5 : Taking *M* as centre and *MA* as radius, draw a circle intersecting the given circle at *B* and *E*.

C

 \cap

Step 6 : Join *AB* and *AE*.

Thus, AB and AE are the required two tangents to the given circle from A.

Justification:

Join *OE*, then $\angle AEO = 90^{\circ}$ [Angle in a semi-circle] $\therefore AE \perp OE$

But *OE* is a radius of the given circle.

 \Rightarrow AE has to be a tangent to the circle.

Similarly, *AB* is also a tangent to the given circle.

MtG BEST SELLING BOOKS FOR CLASS 10

10

NCERT

F⁴NGERTIPS

MATHEMATICS

10

Visit www.mtg.in for complete information