Quadratic Equations

SOLUTIONS

1. (b): Given α and β be roots of the equation $kx^2 + bx + c = 0$.

We have,
$$\alpha = \frac{-b + \sqrt{b^2 - 12c}}{6}$$
 and $\beta = \frac{-b - \sqrt{b^2 - 12c}}{6}$

- $\therefore 2k = 6 \implies k = 3$
- 2. **(b)**: We have, $9x^2 + 3px + 4 = 0$

Here, a = 9, b = 3p and c = 4.

$$D = b^2 - 4ac = (3p)^2 - 4(9)(4) = 9p^2 - 144$$

The equation has real and equal roots, so D = 0

$$\Rightarrow 9p^2 - 144 = 0 \Rightarrow p^2 = \frac{144}{9} \Rightarrow p^2 = 16$$

- $\Rightarrow p = \pm 4$
- 3. (d): We have, $m^2 x^2 + 2mcx = (a^2 c^2) x^2$
- \Rightarrow $(m^2 + 1)x^2 + 2mcx a^2 + c^2 = 0$

Here, $A = m^2 + 1$, B = 2mc and $C = -a^2 + c^2$.

$$D = B^2 - 4AC = 4m^2c^2 - 4(m^2 + 1)(c^2 - a^2)$$
$$= 4m^2c^2 - 4m^2c^2 + 4a^2m^2 - 4c^2 + 4a^2 = 4(a^2 - c^2 + a^2m^2)$$

Since, the equation has equal roots, so D = 0

$$\Rightarrow 4(a^2 - c^2 + a^2 m^2) = 0 \Rightarrow c^2 = a^2 (1 + m^2)$$

4. **(b)**: Let $x = \sqrt{20 + \sqrt{20 + \sqrt{20 + \dots \infty}}} \implies x = \sqrt{20 + x}$

Squaring on both sides, we get

$$x^2 = 20 + x \Rightarrow x^2 - x - 20 = 0$$

$$\Rightarrow$$
 $(x-5)(x+4)=0 \Rightarrow x=5 \text{ or } x=-4$

But *x* is a positive quantity.

- $\therefore x = 5$
- 5. **(b)**: Given, $a^2x^2 (a^2b^2 + 1)x + b^2 = 0$

$$\Rightarrow a^2x^2 - a^2b^2x - x + b^2 = 0 \Rightarrow a^2x(x - b^2) - 1(x - b^2) = 0$$

- \Rightarrow $(a^2x 1)(x b^2) = 0$
- $\Rightarrow a^2x 1 = 0 \text{ or } x b^2 = 0 \Rightarrow x = 1/a^2 \text{ or } x = b^2$
- \therefore 1/ a^2 , b^2 are the required roots.
- 6. **(b)**: We have, $21x^2 2x + 1/21 = 0$
- \Rightarrow 441 $x^2 42x + 1 = 0$

Here, a = 441, b = -42 and c = 1.

$$D = b^2 - 4ac = (-42)^2 - 4(441)(1) = 1764 - 1764 = 0$$

Hence, both roots are real and repeated.

- 7. We have, $x(x + 2c) = -ab \Rightarrow x^2 + 2cx + ab = 0$...(i)
- (i) has real and unequal roots, so $D = b^2 4ac > 0$
- $\Rightarrow 4c^2 4ab > 0 \Rightarrow c^2 > ab$

Also, we have $x^2 - 2(a + b)x + 2c^2 + a^2 + b^2 = 0$...(ii)

Here, $D = 4(a + b)^2 - 4(2c^2 + a^2 + b^2)$

$$= 4(a^2 + b^2 + 2ab - 2c^2 - a^2 - b^2) = 8(ab - c^2) < 0 \quad [\because c^2 > ab]$$

So, (ii) has no real roots.

- 8. For equal roots, discriminant = 0
- $(k+1)^2 4(k+4)(1) = 0$
- $\Rightarrow k^2 + 2k + 1 4k 16 = 0 \Rightarrow k^2 2k 15 = 0$
- \Rightarrow $(k-5)(k+3) = 0 \Rightarrow k = 5 \text{ or } k = -3$
- 9. Given, x = 1 is root of the given equation, so it will satisfy the given equation.
- $a(1)^2 5(a-1) \times 1 1 = 0$
- \Rightarrow $a-5a+5-1=0 \Rightarrow -4a=-4 \Rightarrow a=\frac{-4}{-4}=1$
- **10.** We have, $p^2q^2x^2 q^2x p^2x + 1 = 0$
- $\Rightarrow q^2x(p^2x-1) 1(p^2x-1) = 0$
- \Rightarrow $(p^2x 1) (q^2x 1) = 0 \Rightarrow x = \frac{1}{p^2} \text{ or } x = \frac{1}{q^2}$
- 11. Let the numbers be x and (x + 4).

According to the question, x(x + 4) = 45

$$\Rightarrow x^2 + 4x - 45 = 0 \Rightarrow x^2 + 9x - 5x - 45 = 0$$

- $\Rightarrow x(x+9) 5(x+9) = 0$
- \Rightarrow $(x + 9) (x 5) = 0 \Rightarrow x + 9 = 0 \text{ or } x 5 = 0$
- $\Rightarrow x = -9 \text{ or } x = 5$

If x = -9, numbers are -9, -9 + 4 *i.e.*, -9, -5

If x = 5, numbers are 5, 5 + 4 *i.e.*, 5, 9

12. Let the number be x.

According to question, $x + 2x^2 = 21$

$$\Rightarrow$$
 2x² + x - 21 = 0 \Rightarrow 2x² - 6x + 7x - 21 = 0

- \Rightarrow 2x(x 3) + 7(x 3) = 0
- \Rightarrow $(x-3)(2x+7) = 0 \Rightarrow x = 3 \text{ or } x = \frac{-7}{2}$
- **13.** The given quadratic equation is $3x^2 + 7x + k = 0$...(i)

Here, a = 3, b = 7 and c = k.

- $D = b^2 4ac = (7)^2 4(3)(k) = 49 12k$
- \therefore Equation (i) has real and equal roots, so D = 0.
- \Rightarrow 49 12k = 0 \Rightarrow 12k = 49 \Rightarrow k = $\frac{49}{12}$
- **14.** The given quadratic equation is
- $x(x-4) + p = 0 \implies x^2 4x + p = 0$

Here, a = 1, b = -4 and c = p.

For real and equal roots : $D = b^2 - 4ac = 0$

$$\Rightarrow$$
 $(-4)^2 - 4(1)(p) = 0$

$$\Rightarrow$$
 16 - 4p = 0 \Rightarrow 4p = 16 \Rightarrow p = 4

15. Since 2 is a root of the equation $x^2 + kx + 12 = 0$.

$$\therefore (2)^2 + k(2) + 12 = 0 \implies 4 + 2k + 12 = 0 \implies 2k + 16 = 0$$

$$\Rightarrow k = -16/2 \Rightarrow k = -8$$

Putting k = -8 in the equation $x^2 + kx + q = 0$, we get

The equation (i) will have equal roots, if discriminant = 0

$$\Rightarrow$$
 $(-8)^2 - 4(1)q = 0$

$$\Rightarrow$$
 64 - 4q = 0 \Rightarrow q = 64/4 \Rightarrow q = 16

16. We have, $x^2 - x + 2 = 0$

Here, a = 1, b = -1 and c = 2

$$D = b^2 - 4ac = (-1)^2 - 4 \times 1 \times 2 = 1 - 8 = -7 < 0$$

 \therefore The given quadratic equation does not have real roots.

17. (i) (a) : To have no real roots, discriminant $(D = b^2 - 4ac)$ should be < 0.

(a)
$$D = 7^2 - 4(-4)(-4) = 49 - 64 = -15 < 0$$

(b)
$$D = 7^2 - 4(-4)(-2) = 49 - 32 = 17 > 0$$

(c)
$$D = 5^2 - 4(-2)(-2) = 25 - 16 = 9 > 0$$

(d)
$$D = 6^2 - 4(3)(2) = 36 - 24 = 12 > 0$$

(ii) (b): To have rational roots, discriminant $(D = b^2 - 4ac)$ should be > 0 and also a perfect square.

(a) $D = 1^2 - 4(1)(-1) = 1 + 4 = 5$, which is not a perfect square.

(b) $D = (-5)^2 - 4(1)(6) = 25 - 24 = 1$, which is a perfect square.

(c) $D = (-3)^2 - 4(4)(-2) = 9 + 32 = 41$, which is not a perfect square.

(d) $D = (-1)^2 - 4(6)(11) = 1 - 264 = -263$, which is not a perfect square.

(iii) (c): To have irrational roots, discriminant $(D = b^2 - 4ac)$ should be > 0 but not a perfect square.

(a)
$$D = 2^2 - 4(3)(2) = 4 - 24 = -20 < 0$$

(b) $D = (-7)^2 - 4(4)(3) = 49 - 48 = 1 > 0$ and also a perfect square.

(c) $D = (-3)^2 - 4(6)(-5) = 9 + 120 = 129 > 0$ and not a perfect square.

(d) $D = 3^2 - 4(2)(-2) = 9 + 16 = 25 > 0$ and also a perfect square.

(iv) (d): To have equal roots, discriminant $(D = b^2 - 4ac)$ should be = 0.

(a)
$$D = (-3)^2 - 4(1)(4) = 9 - 16 = -7 < 0$$

(b)
$$D = (-2)^2 - 4(2)(1) = 4 - 8 = -4 < 0$$

(c)
$$D = (-10)^2 - 4(5)(1) = 100 - 20 = 80 > 0$$

(d)
$$D = 6^2 - 4(9)(1) = 36 - 36 = 0$$

(v) (a): To have two distinct real roots, discriminant ($D = b^2 - 4ac$) should be > 0.

(a)
$$D = 3^2 - 4(1)(1) = 9 - 4 = 5 > 0$$

(b)
$$D = 3^2 - 4(-1)(-3) = 9 - 12 = -3 < 0$$

(c)
$$D = 8^2 - 4(4)(4) = 64 - 64 = 0$$

(d)
$$D = 6^2 - 4(3)(4) = 36 - 48 = -12 < 0$$

18. (i) (b): Roots of the quadratic equation are 2 and -3.

... The required quadratic equation is
$$(x-2)(x+3) = 0 \Rightarrow x^2 + x - 6 = 0$$

(ii) (a): We have, $2x^2 + kx + 1 = 0$

Since, -1/2 is the root of the equation, so it will satisfy the given equation.

$$\therefore 2\left(-\frac{1}{2}\right)^2 + k\left(-\frac{1}{2}\right) + 1 = 0 \Rightarrow 1 - k + 2 = 0 \Rightarrow k = 3$$

(iii) (d): If the roots of the quadratic equations are opposites to each other, then coefficient of x (sum of roots) is 0.

So, both options (a) and (b) have the coefficient of x = 0.

(iv) (c): The given equation is
$$(x-2)^2 + 19 = 0$$

 $\Rightarrow x^2 - 4x + 4 + 19 = 0 \Rightarrow x^2 - 4x + 23 = 0$

(v) (b): If one root of a quadratic equation is irrational, then its other root is also irrational and also its conjugate *i.e.*, if one root is $p + \sqrt{q}$, then its other root is $p - \sqrt{q}$.

19. (i) (b): We have, $6x^2 + x - 2 = 0$

$$\Rightarrow$$
 $6x^2 - 3x + 4x - 2 = 0$

$$\Rightarrow$$
 $(3x+2)(2x-1)=0$

$$\Rightarrow x = \frac{1}{2}, \frac{-2}{3}$$

(ii) (c) : $2x^2 + x - 300 = 0$

$$\Rightarrow$$
 2 x^2 - 24 x + 25 x - 300 = 0

$$\implies (x - 12)(2x + 25) = 0$$

$$\Rightarrow x = 12, \frac{-25}{2}$$

(iii) (d):
$$x^2 - 8x + 16 = 0$$

$$\Rightarrow (x-4)^2 = 0 \Rightarrow (x-4)(x-4) = 0 \Rightarrow x = 4, 4$$

(iv) (d):
$$6x^2 - 13x + 5 = 0$$

$$\Rightarrow$$
 $6x^2 - 3x - 10x + 5 = 0$

$$\Rightarrow$$
 $(2x-1)(3x-5)=0$

$$\Rightarrow x = \frac{1}{2}, \frac{5}{3}$$

Quadratic Equations 3

(v) (a):
$$100x^2 - 20x + 1 = 0$$

$$\Rightarrow (10x-1)^2 = 0 \Rightarrow x = \frac{1}{10}, \frac{1}{10}$$

(iii) (a):
$$x(x+3) + 7 = 5x - 11$$

$$\Rightarrow x^2 + 3x + 7 = 5x - 11$$

$$\Rightarrow$$
 $x^2 - 2x + 18 = 0$ is a quadratic equation.

(b)
$$(x-1)^2 - 9 = (x-4)(x+3)$$

$$\Rightarrow x^2 - 2x - 8 = x^2 - x - 12$$

$$\Rightarrow$$
 x - 4 = 0 is not a quadratic equation.

(c)
$$x^2(2x+1) - 4 = 5x^2 - 10$$

$$\Rightarrow 2x^3 + x^2 - 4 = 5x^2 - 10$$

$$\Rightarrow$$
 2x³ - 4x² + 6 = 0 is not a quadratic equation.

(d)
$$x(x-1)(x+7) = x(6x-9)$$

$$\implies x^3 + 6x^2 - 7x = 6x^2 - 9x$$

$$\Rightarrow$$
 $x^3 + 2x = 0$ is not a quadratic equation.

21. Let $\triangle ABC$ is the given triangle.

Let base, BC = x cm, then altitude, AB = (x + 8) cm

By Pythagoras theorem, we have

$$(AB)^2 + (BC)^2 = (AC)^2$$

$$\Rightarrow (x+8)^2 + x^2 = 40^2$$

$$\Rightarrow$$
 $x^2 + 64 + 16x + x^2 = 1600$

$$\Rightarrow$$
 2 x^2 + 16 x - 1536 = 0

$$\Rightarrow x^2 + 8x - 768 = 0$$

$$\Rightarrow x^2 + 32x - 24x - 768 = 0 \Rightarrow x(x + 32) - 24(x + 32) = 0$$

$$\Rightarrow$$
 $(x + 32)(x - 24) = 0 \Rightarrow x = -32 \text{ or } x = 24$

But side of a triangle can't be negative.

$$\therefore x = 24$$

22. Let the first part be x, then the second part will be 12 - x

According to the given condition,

$$x^{2} + (12 - x)^{2} = 74 \Rightarrow x^{2} + 144 + x^{2} - 24x - 74 = 0$$

$$\Rightarrow$$
 2x² - 24x + 70 = 0 \Rightarrow x² - 12x + 35 = 0

$$\Rightarrow x^2 - 7x - 5x + 35 = 0 \Rightarrow x(x - 7) - 5(x - 7) = 0$$

$$\Rightarrow$$
 $(x-7)(x-5) = 0 \Rightarrow x-7 = 0 \text{ or } x-5 = 0$

$$\Rightarrow$$
 $x = 7 \text{ or } x = 5$

.. Two parts of 12 are 7 and 5.

23. Let one number be x, then other number will be x - 7.

According to question, $x(x-7) = 408 \Rightarrow x^2 - 7x - 408 = 0$

$$\Rightarrow x^2 - 24x + 17x - 408 = 0 \Rightarrow x(x - 24) + 17(x - 24) = 0$$

$$\Rightarrow$$
 $(x-24)(x+17)=0 \Rightarrow x=24 \text{ or } x=-17 \text{ (rejected)}$

Thus, one number is 24 and other number is 17.

Sum of numbers = 24 + 17 = 41

24. Given,
$$4x^2 - 2(c+1)x + (c+4) = 0$$

Here,
$$A = 4$$
, $B = -2(c + 1)$ and $C = c + 4$

Now,
$$D = B^2 - 4AC$$

$$= \{-2(c+1)\}^2 - 4 \times 4 \times (c+4) = 4(c^2 + 2c + 1) - 16(c+4)$$
$$= 4c^2 + 8c + 4 - 16c - 64 = 4c^2 - 8c - 60$$

For equal roots,
$$D = 0$$

$$\therefore 4c^2 - 8c - 60 = 0 \Rightarrow c^2 - 2c - 15 = 0$$

$$\Rightarrow$$
 $(c+3)(c-5) = 0 \Rightarrow c = -3 \text{ or } c = 5$

25. Given,
$$\frac{1}{2a+b+2x} = \frac{1}{2a} + \frac{1}{b} + \frac{1}{2x}$$

$$\Rightarrow \quad \frac{1}{2a+b+2x} - \frac{1}{2x} = \frac{1}{2a} + \frac{1}{b}$$

$$\Rightarrow \frac{2x - 2a - b - 2x}{2x(2a + b + 2x)} = \frac{b + 2a}{2ab}$$

$$\Rightarrow \frac{-(2a+b)}{2x(2a+b+2x)} = \frac{b+2a}{2ab} \Rightarrow \frac{-1}{x(2a+b+2x)} = \frac{1}{ab}$$

$$\Rightarrow 2x^2 + 2ax + bx + ab = 0 \Rightarrow 2x(x+a) + b(x+a) = 0$$

$$\Rightarrow$$
 $(x+a)(2x+b) = 0 \Rightarrow x = -a \text{ or } x = \frac{-b}{2}$

26. Given,
$$\frac{6}{x} - \frac{2}{x-1} = \frac{1}{x-2} \Rightarrow \frac{6x-6-2x}{x(x-1)} = \frac{1}{x-2}$$

$$\Rightarrow \frac{4x-6}{x^2-x} = \frac{1}{x-2} \Rightarrow 4x^2 - 6x - 8x + 12 = x^2 - x$$

$$\Rightarrow$$
 $4x^2 - 14x + 12 = x^2 - x$

$$\Rightarrow$$
 3x² - 13x + 12 = 0 \Rightarrow 3x² - 9x - 4x + 12 = 0

$$\Rightarrow$$
 3x(x-3) - 4(x-3) = 0 \Rightarrow (x-3) (3x-4) = 0

$$\Rightarrow x - 3 = 0 \text{ or } 3x - 4 = 0$$

$$\Rightarrow$$
 $x = 3 \text{ or } x = 4/3$

OR

Let the number of persons in 1^{st} condition is x and in 2^{nd} condition is (x + 15).

Amount to be divided = ₹ 6500

According to the question, $\frac{6500}{x} - \frac{6500}{x+15} = 30$

$$\Rightarrow \frac{6500x + 97500 - 6500x}{x(x+15)} = \frac{30}{1}$$

$$\Rightarrow$$
 30x² + 450x = 97500 \Rightarrow 30x² + 450x - 97500 = 0

$$\Rightarrow x^2 + 15x - 3250 = 0 \Rightarrow x^2 + 65x - 50x - 3250 = 0$$

$$\Rightarrow$$
 $x(x + 65) - 50(x + 65) = 0 \Rightarrow $(x + 65)(x - 50) = 0$$

$$\Rightarrow x + 65 = 0 \text{ or } x - 50 = 0 \Rightarrow x = -65 \text{ or } x = 50$$

. Number of persons cannot be negative

∴ Original number of persons = 50.

27. Let the length of one side of garden be x m and other side be y m. Then, x = x = x

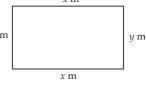
$$x + y + x = 30$$

$$\Rightarrow$$
 $y = 30 - 2x$...(i)

Given, area of the vegetable

garden = 100 m^2

$$\Rightarrow xy = 100$$



$$\Rightarrow x(30 - 2x) = 100$$
 [Using (i)]

$$\Rightarrow$$
 30x - 2x² = 100 \Rightarrow 15x - x² = 50

$$\Rightarrow x^2 - 15x + 50 = 0 \Rightarrow x^2 - 10x - 5x + 50 = 0$$

$$\Rightarrow$$
 $(x - 10)(x - 5) = 0 \Rightarrow x = 5 \text{ or } 10$

When
$$x = 5$$
, then $y = 30 - 2 \times 5 = 20$ [Using (i)]

When
$$x = 10$$
, then $y = 30 - 2 \times 10 = 10$ [Using (i)]

Hence, the dimensions of the vegetable garden are 5 m and 20 m or 10 m and 10 m.

OR

Let *x* be the total number of students of the class.

Number of students opted for visiting an old age home $=\frac{3}{8}x$.

Number of students opted for having a nature walk = 16. Number of students opted for tree plantation in the school = \sqrt{x} .

According to the given condition,

$$\frac{3}{8}x = 16 + \sqrt{x} \implies 3x = 128 + 8\sqrt{x}$$

$$\Rightarrow$$
 $3y^2 = 128 + 8y$, where $\sqrt{x} = y$

$$\Rightarrow$$
 $3y^2 - 8y - 128 = 0 \Rightarrow 3y^2 - 24y + 16y - 128 = 0$

$$\Rightarrow$$
 3y(y - 8) + 16(y - 8) = 0 \Rightarrow (y - 8) (3y + 16) = 0

$$\Rightarrow$$
 y - 8 = 0 or 3y + 16 = 0

$$\Rightarrow y = 8 \text{ or } y = -\frac{16}{3} \Rightarrow \sqrt{x} = 8 \quad \left[\because \sqrt{x} \neq -\frac{16}{3}\right]$$

$$\Rightarrow x = 64$$

Hence, the total number of students of the class is 64.

28. Let the numerator of the fraction = x

Then denominator of the fraction = 2x + 1

$$\therefore$$
 Fraction = $\frac{x}{2x+1}$ and its reciprocal = $\frac{2x+1}{x}$

According to given condition, $\frac{x}{2x+1} + \frac{2x+1}{x} = 2\frac{16}{21}$

$$\Rightarrow \frac{x^2 + 4x^2 + 1 + 4x}{2x^2 + x} = \frac{58}{21} \Rightarrow \frac{5x^2 + 1 + 4x}{2x^2 + x} = \frac{58}{21}$$

$$\Rightarrow$$
 116 x^2 + 58 x = 105 x^2 + 84 x + 21

$$\Rightarrow$$
 116 x^2 + 58 x - 105 x^2 - 84 x - 21 = 0

$$\Rightarrow$$
 11x² - 26x - 21 = 0 \Rightarrow 11x² - 33x + 7x - 21 = 0

$$\Rightarrow$$
 11x(x - 3) + 7(x - 3) = 0 \Rightarrow (x - 3) (11x + 7) = 0

$$\Rightarrow x - 3 = 0 \text{ or } 11x + 7 = 0 \Rightarrow x = 3 \text{ or } x = -7/11$$

$$\therefore$$
 $x = 3$ (Neglecting negative value)

$$\therefore \quad \text{Fraction} = \frac{x}{2x+1} = \frac{3}{6+1} = \frac{3}{7}$$

29. Let the original price of the toy = $\mathbf{\xi} x$

Then the reduced price of the toy = $\mathbb{T}(x-2)$

According to the question,

$$\frac{360}{x-2} - \frac{360}{x} = 2$$
 (: Number of toys = $\frac{\text{Total amount}}{\text{Price of 1 toy}}$)

$$\Rightarrow \frac{360x - 360x + 720}{x(x-2)} = 2 \Rightarrow \frac{720}{x(x-2)} = \frac{2}{1}$$

$$\Rightarrow x(x-2) = 360$$

$$\Rightarrow x^2 - 2x - 360 = 0 \Rightarrow x^2 - 20x + 18x - 360 = 0$$

$$\Rightarrow$$
 $x(x-20) + 18(x-20) = 0 \Rightarrow $(x-20)(x+18) = 0$$

$$\Rightarrow x - 20 = 0 \text{ or } x + 18 = 0$$

$$\Rightarrow$$
 $x = 20 \text{ or } x = -18$

$$\therefore$$
 x = 20 [: Price cannot be negative]

∴ Original price of the toy = ₹ 20

30. Given,
$$(2p+1)x^2 - (7p+2)x + (7p-3) = 0$$
 ...(i)

$$\therefore$$
 Roots are equal. \therefore $D = 0$

$$\Rightarrow (-(7p+2))^2 - 4(2p+1)(7p-3) = 0$$

$$\Rightarrow$$
 49 p^2 + 4 + 28 p - 4(14 p^2 + 7 p - 6 p - 3) = 0

$$\Rightarrow$$
 49p² + 28p + 4 - 56p² - 4p + 12 = 0

$$\Rightarrow$$
 $7p^2 - 24p - 16 = 0 \Rightarrow 7p^2 + 4p - 28p - 16 = 0$

$$\Rightarrow p(7p+4) - 4(7p+4) = 0 \Rightarrow (p-4)(7p+4) = 0$$

$$\Rightarrow p = 4 \text{ or } p = \frac{-4}{7}$$

When p = 4, (i) becomes $9x^2 - 30x + 25 = 0$

$$\Rightarrow$$
 $(3x)^2 - 2(3x)(5) + (5)^2 = 0$

$$\Rightarrow (3x-5)^2 = 0 \Rightarrow x = \frac{5}{3}, \frac{5}{3}$$

When $p = \frac{-4}{7}$, (i) becomes

$$\frac{-x^2}{7} + 2x - 7 = 0 \implies x^2 - 14x + 49 = 0$$

$$\Rightarrow$$
 $(x-7)^2 = 0 \Rightarrow x = 7, 7$

Thus, equal roots of given equation are either 5/3 or 7.

31. Let the denominator of the fraction = x

$$\therefore$$
 Numerator of the fraction = $x - 4$

$$\Rightarrow$$
 Fraction = $\frac{x-4}{x}$

According to question

$$\frac{x-4}{x+1} = \frac{x-4}{x} - \frac{1}{18} \implies \frac{x-4}{x} - \frac{x-4}{x+1} = \frac{1}{18}$$

$$\Rightarrow (x-4) \left[\frac{1}{x} - \frac{1}{x+1} \right] = \frac{1}{18} \Rightarrow (x-4) \left[\frac{x+1-x}{x(x+1)} \right] = \frac{1}{18}$$

$$\Rightarrow$$
 18(x - 4) = x(x + 1) \Rightarrow 18x - 72 = x² + x

$$\Rightarrow x^2 - 17x + 72 = 0 \Rightarrow x^2 - 9x - 8x + 72 = 0$$

$$\Rightarrow x(x-9) - 8(x-9) = 0 \Rightarrow (x-8)(x-9) = 0$$

$$\Rightarrow x = 8 \text{ or } x = 9$$

But x = 8 is not possible $\therefore x = 9$

Hence, the fraction
$$\frac{x-4}{x}$$
 is $\frac{5}{9}$.

32. Let breadth of rectangular park = x m

Then, length of rectangular park = (x + 3)m

Now, area of rectangular park = $x(x + 3) = (x^2 + 3x)m^2$

Given, base of triangular park = Breadth of the rectangular park

 \therefore Base of triangular park = x m

and also it is given that altitude of triangular park = 12 m

$$\therefore \text{ Area of triangular park} = \frac{1}{2} \times x \times 12 = 6x \text{ m}^2$$

According to the question,

Area of rectangular park = 4 + Area of triangular park

$$\Rightarrow x^2 + 3x = 4 + 6x \Rightarrow x^2 + 3x - 6x - 4 = 0$$

$$\Rightarrow x^2 - 3x - 4 = 0 \Rightarrow x^2 - 4x + x - 4 = 0$$

$$\Rightarrow x(x-4) + 1(x-4) = 0 \Rightarrow (x-4)(x+1) = 0$$

$$\Rightarrow x-4=0 \text{ or } x+1=0 \Rightarrow x=4 \text{ or } x=-1$$

Since, breadth cannot be negative.

$$\therefore x = 4$$

Hence, breadth of the rectangular park = 4 m and length of the rectangular park = x + 3 = 4 + 3 = 7 m.

OR

Let the length of piece of cloth = x m

Increased length of piece of cloth = (x + 5)m

Total cost of piece of cloth = ₹ 200

According to the question,

$$\frac{200}{x} - \frac{200}{x+5} = 2$$
 \[\therefore \text{Rate per metre} = \frac{\text{Total cost}}{\text{Length}} \]

$$\Rightarrow \frac{}{x(x+5)} = 2$$

$$\Rightarrow$$
 1000 = 2 x^2 + 10 x \Rightarrow 2 x^2 + 10 x - 1000 = 0

$$\Rightarrow$$
 $x^2 + 5x - 500 = 0 \Rightarrow x^2 + 25x - 20x - 500 = 0$

$$\Rightarrow x(x+25) - 20(x+25) = 0 \Rightarrow (x+25)(x-20) = 0$$

$$\Rightarrow$$
 $x + 25 = 0$ or $x - 20 = 0 \Rightarrow x = -25$ or $x = 20$

But, length can never be negative.

 \therefore Length of cloth = 20 m

and rate per metre = $\frac{200}{20}$ = $\frac{200}{20}$ = $\frac{200}{20}$

33 Let the number of students in the group in the beginning be x.

Total internet service charges for *x* students = \ge 4800

∴ Internet service charges for each student = $₹ \frac{4800}{x}$ It is given that 4 more students join the group.

 \therefore The number of students in group for internet service = (x + 4)

Now, the internet service charges for each student $= \sqrt[3]{\frac{4800}{r+4}}$

According to question,
$$\frac{4800}{x} - \frac{4800}{x+4} = 200$$

$$\Rightarrow \frac{4800x + 19200 - 4800x}{x(x+4)} = 200$$

$$\Rightarrow$$
 19200 = 200($x^2 + 4x$) \Rightarrow 96 = $x^2 + 4x$

$$\Rightarrow$$
 $x^2 + 4x - 96 = 0 \Rightarrow x^2 + 12x - 8x - 96 = 0$

$$\Rightarrow x(x+12) - 8(x+12) = 0 \Rightarrow (x-8)(x+12) = 0$$

$$\Rightarrow x - 8 = 0 \text{ or } x + 12 = 0 \Rightarrow x = 8 \text{ or } x = -12$$

But number of students cannot be negative

$$\therefore x = 8$$

Hence, the number of students in the group in the beginning is 8.

OF

Let the speed of the train be x km/hour.

When the speed is 9 km/hour more, then the new speed of the train is (x + 9) km/hour.

Time taken by the train with speed x km/hour for a journey of 180 km = $\frac{180}{x}$ hours

Time taken by the train with new speed (x + 9) km/hour for a journey of 180 km = $\frac{180}{(x+9)}$ hours

According to the question, $\frac{180}{x} - \frac{180}{x+9} = 1$

$$\Rightarrow 180 \left[\frac{1}{x} - \frac{1}{x+9} \right] = 1 \Rightarrow 180 \left[\frac{x+9-x}{x(x+9)} \right] = 1$$

$$\Rightarrow$$
 180 × 9 = $x(x + 9) \Rightarrow x^2 + 9x - 1620 = 0$

$$\Rightarrow$$
 $x^2 + 45x - 36x - 1620 = 0 $\Rightarrow x(x + 45) - 36(x + 45) = 0$$

$$\Rightarrow$$
 $(x + 45) (x - 36) = 0 \Rightarrow x + 45 = 0 \text{ or } x - 36 = 0$

$$\Rightarrow x = -45 \text{ or } x = 36$$

But, speed can't be negative.

$$\therefore \quad x = 36$$

Hence, the uniform speed of the train is 36 km/hour.

34. Let x and y be the sides of two squares, respectively such that x > y, where x is the side of the first square and y is the side of the second square.

 \therefore Area of the first square + Area of the second square = 640 m²

$$\Rightarrow x^2 + y^2 = 640 \qquad ...(i)$$

Again, it is given that the difference of their perimeters = 64 m

$$\Rightarrow$$
 $4x - 4y = 64 \Rightarrow x = 16 + y$...(ii)

From (i) and (ii), we have, $(16 + y)^2 + y^2 = 640$

$$\Rightarrow$$
 256 + y^2 + 32 y + y^2 = 640 \Rightarrow 2 y^2 + 32 y - 384 = 0

$$\Rightarrow v^2 + 16v - 192 = 0 \Rightarrow v^2 + 24v - 8v - 192 = 0$$

$$\Rightarrow y(y + 24) - 8(y + 24) = 0 \Rightarrow (y + 24)(y - 8) = 0$$

$$\Rightarrow$$
 $y + 24 = 0$ or $y - 8 = 0 \Rightarrow y = -24$ or $y = 8$

But, side of a square can't be negative. $\therefore y = 8$

When y = 8, then from (ii), we get x = 16 + 8 = 24.

Hence, the sides of the two squares are 24 m and 8 m respectively.

OR

Let the speed of Deccan Queen = x km/hr and speed of other train = (x - 20) km/hr

Time taken by Deccan Queen = $\frac{192}{x}$ hr

and time taken by other train = $\frac{192}{(x-20)}$ hr

According to the question, $\frac{192}{(x-20)} - \frac{192}{x} = \frac{48}{60}$ or $\frac{4}{5}$

$$\Rightarrow \frac{192x - 192x + 3840}{x(x - 20)} = \frac{4}{5}$$

$$\Rightarrow$$
 5(3840) = 4x(x - 20) \Rightarrow 19200 = 4x² - 80x

$$\Rightarrow$$
 4x² - 80x - 19200 = 0 \Rightarrow x² - 20x - 4800 = 0

$$\Rightarrow x^2 - 80x + 60x - 4800 = 0 \Rightarrow x(x - 80) + 60(x - 80) = 0$$

$$\Rightarrow$$
 $(x - 80) (x + 60) = 0 \Rightarrow x - 80 = 0 \text{ or } x + 60 = 0$

$$\Rightarrow x = 80 \text{ or } x = -60$$

As speed can never be negative. $\therefore x = 80$

- :. Speed of Deccan Queen = 80 km/hr.
- **35.** Let the usual speed of the plane be x km/hr.
- \therefore Time taken to travel 1500 km at x km/hr

$$= \frac{1500}{x} \text{ hour}$$

Increased speed of the plane = (x + 250) km/hr

 \therefore Time taken to travel 1500 km at (x + 250) km/hr

$$=\frac{1500}{x+250}$$
 hour

According to question,

$$\frac{1500}{x} - \frac{1500}{x + 250} = \frac{30}{60} \implies 1500 \left(\frac{x + 250 - x}{x(x + 250)} \right) = \frac{1}{2}$$

$$\Rightarrow$$
 2 × 1500 × 250 = x^2 + 250 x

$$\Rightarrow x^2 + 250x - 750000 = 0$$

$$\Rightarrow$$
 $x^2 + 1000x - 750x - 750000 = 0$

$$\Rightarrow x(x+1000) - 750(x+1000) = 0$$

$$\Rightarrow$$
 $(x + 1000)(x - 750) = 0$

$$\Rightarrow$$
 $x = 750$ or $x = -1000$ (But speed can't be negative)

$$\therefore \quad x = 750$$

Hence, usual speed of the plane is 750 km/hr.

MtG BEST SELLING BOOKS FOR CLASS 10

