

Arithmetic Progressions

SOLUTIONS

1. (c) : Since, $\frac{1}{x+2}$, $\frac{1}{x+3}$, $\frac{1}{x+5}$ are in A.P.
$\therefore \frac{1}{x+3} - \frac{1}{x+2} = \frac{1}{x+5} - \frac{1}{x+3}$
x+3 $x+2$ $x+5$ $x+3$
$\Rightarrow \frac{x+2-x-3}{(x+3)(x+2)} = \frac{x+3-x-5}{(x+5)(x+3)}$
$\Rightarrow \frac{-1}{(x+3)(x+2)} = \frac{-2}{(x+5)(x+3)} \Rightarrow \frac{-1}{x+2} = \frac{-2}{x+5}$
$\Rightarrow -x - 5 = -2x - 4 \Rightarrow -x + 2x = -4 + 5 \Rightarrow x = 1$
2. (d) : Given A.P. is 5, $\frac{19}{4}$, $\frac{9}{2}$, $\frac{17}{4}$,
Here, $a = 5$, $d = \frac{19}{4} - 5 = -\frac{1}{4}$
$\therefore 10^{\text{th}} \text{ term}, a_{10} = a + (10 - 1)d$
$=5+9\left(-\frac{1}{4}\right)=\frac{20-9}{4}=\frac{11}{4}$
3. (d) : Since, alternate terms of an A.P. also forms an A.P.
So, $(x - y) - (x + y) = (2x + 3y) - (x - y)$
$\Rightarrow -2y = x + 4y \Rightarrow -2y - 4y = x \Rightarrow x = -6y$
4. (c) : Given A.P. is 25, 50, 75, 100, Here, $a = 25$, $d = 25$ and $a_k = 1000$
Now, $a_k = 1000$
$\Rightarrow a + (k-1)d = 1000 \Rightarrow 25 + (k-1)25 = 1000$
$\Rightarrow 25 + 25k - 25 = 1000 \Rightarrow 25k = 1000 \Rightarrow k = 40$
5. (d) : Let d be the same common difference of two
A.P.s.
Given, first term of 1^{st} A.P., $a = 8$ First term of 2^{nd} A.P., $a_1 = 3$
Now, 30^{th} term of 1^{st} A.P. = $a + 29d = 8 + 29d$
Also, 30 th term of 2 nd A.P. = $a_1 + 29d = 3 + 29d$
$\therefore \text{ Required difference} = (8 + 29d) - (3 + 29d) = 5$
6. Given, A.P. is $\sqrt{27}$, $\sqrt{48}$, $\sqrt{75}$,
<i>i.e.</i> , A.P. is $3\sqrt{3}$, $4\sqrt{3}$, $5\sqrt{3}$,
Clearly, first term, $a = 3\sqrt{3}$
Second term, $a + d = 4\sqrt{3}$
\therefore Common difference, $d = 4\sqrt{3} - 3\sqrt{3} = \sqrt{3}$
7. Since, $\frac{7}{8}$, <i>a</i> , 3 are three consecutive terms of an A.P.
So, $a - \frac{7}{8} = 3 - a \implies 2a = 3 + \frac{7}{8}$

 $\Rightarrow \quad 2a = \frac{24+7}{8} = \frac{31}{8} \Rightarrow a = \frac{31}{16}$ 8. Given, common difference, d = -6Let *a* be the first term of the A.P. Given, $a_9 = 5$ \Rightarrow $a + (9 - 1) \times (-6) = 5 \Rightarrow a - 48 = 5 \Rightarrow a = 53$ Hence, first term of A.P. is 53. Given, common difference, d = 3 be the first term of 9. the A.P. Now, $a_{15} - a_9 = [a + (15 - 1)d] - [a + (9 - 1)d]$ $=14d - 8d = 6d = 6 \times 3 = 18$ [:: d = 3] **10.** Let *d* be the common difference of the A.P. Given, first term = a and n^{th} term, $a_n = b$ $\Rightarrow a + (n-1)d = b \Rightarrow (n-1)d = b - a \Rightarrow d = \frac{b-a}{n-1}$ **11.** $\therefore \frac{1}{yz}, \frac{1}{zx}$ and $\frac{1}{xy}$ are in A.P. $\Rightarrow \frac{1}{zx} - \frac{1}{yz} = \frac{1}{xy} - \frac{1}{zx} \Rightarrow \frac{y - x}{xyz} = \frac{z - y}{xyz}$ \Rightarrow $y - x = z - y \Rightarrow y = \frac{x + z}{2}$ \therefore *x*, *y* and *z* are in A.P. **12.** Given that, a = 4 and $d = \frac{4}{3}$ $\therefore \quad S_n = \frac{n}{2} [2a + (n-1)d]$:. $S_{22} = \left(\frac{22}{2}\right) \left[(2)(4) + (22-1)\left(\frac{4}{3}\right) \right] = (11)(8+28) = 396$ **13.** Given, $a_n = 2n + 5$ \therefore $a_1 = 2(1) + 5 = 7, a_2 = 2(2) + 5 = 9,$ $a_3 = 2(3) + 5 = 11, a_4 = 2(4) + 5 = 13$ \therefore $S_4 = a_1 + a_2 + a_3 + a_4 = 7 + 9 + 11 + 13 = 40$ **14.** Let *a* and *d* are respectively the first term and common difference of the given A.P. Given, $a_4 = a + 3d = 11$...(i) Also, $a_5 + a_7 = 34$ [Given] \Rightarrow [a+4d] + [a+6d] = 34 \Rightarrow 2a + 10d = 34 \Rightarrow 2(11 - 3d) + 10d = 34 [Using (i)] \Rightarrow 22 - 6d + 10d = 34 \Rightarrow 4d = 12 \Rightarrow d = 3 **15.** The first 10 multiples of 3 are 3, 6, 9, 12, 15, 18, 21, 24, 27, 30.

It is an A.P. with first term, a = 3 and common difference, d = 3.

 \therefore Sum of first 10 multiplies of 3 = S_{10}

MtG 100 PERCENT Mathematics Class-10

$$= \frac{10}{2} \{2 \times 3 + (10 - 1) \times 3\} \qquad \left[\because S_n = \frac{n}{2} \{2a + (n - 1)d\} \right]$$

= 5(6 + 27) = 5 × 33 = 165
16. Here A.P. is $\sqrt{6}, \sqrt{24}, \sqrt{54}, \sqrt{96}, \dots$ then
 $a = \sqrt{6}, d = \sqrt{24} - \sqrt{6} = 2\sqrt{6} - \sqrt{6} = \sqrt{6}.$
 $\therefore S_n = \frac{n}{2} [2a + (n - 1)d] = \frac{n}{2} [2\sqrt{6} + (n - 1)\sqrt{6}]$
 $= \frac{n}{2} [\sqrt{6} \ n + \sqrt{6}] = \frac{\sqrt{6}n(n + 1)}{2}$

17. Here the smallest 3-digit number divisible by 7 is 105. So, the number of bacteria taken into consideration is 105, 112, 119,, 994

So, first term (a) = 105, d = 7 and last term = 994

(i) (c) : $t_5 = a + 4d = 105 + 28 = 133$

(ii) (b) : Let *n* samples be taken under consideration.∵ Last term = 994

 $\Rightarrow a + (n-1)d = 994 \Rightarrow 105 + (n-1)7 = 994 \Rightarrow n = 128$

(iii) (a) : Total number of bacteria in first 10 samples

=
$$S_{10} = \frac{10}{2} [2(105) + 9(7)] = 1365$$

(iv) (a) : t_7 from end = $(128 - 7 + 1)^{\text{th}}$ term from beginning = 122^{th} term = 105 + 121(7) = 952

(v) (c) : $t_{50} = 105 + 49 \times 7 = 448$

18. Geeta's A.P. is -5, -2, 1, 4, ... Here, first term $(a_1) = -5$ and common difference $(d_1) = -2 + 5 = 3$

Similarly, Madhuri's A.P. is 187, 184, 181, ...

Here first term $(a_2) = 187$ and common difference $(d_2) = 184 - 187 = -3$

(i) (b):
$$t_{34} = a_2 + 33d_2 = 187 + 33(-3) = 88$$

- (ii) (d): Required sum = 3 + (-3) = 0
- (iii) (a) : $t_{19} = a_1 + 18d_1 = (-5) + 18(3) = 49$

(iv) (a) :
$$S_{10} = \frac{n}{2} [2a_1 + (n-1)d_1] = \frac{10}{2} [2(-5) + 9(3)] = 85$$

(v) (b): Let n^{th} terms of the two A.P.'s be equal. $\therefore -5 + (n-1)3 = 187 + (n-1)(-3)$ $\Rightarrow 6(n-1) = 192 \Rightarrow n = 33$

19. Number of pairs of shoes in 1^{st} , 2^{nd} , 3^{rd} row, ... are 3, 5, 7, ...

So, it forms an A.P. with first term a = 3, d = 5 - 3 = 2

(i) (d) : Let *n* be the number of rows required. $\therefore S_n = 120$ $\Rightarrow \frac{n}{2}[2(3)+(n-1)2]=120$ $\Rightarrow n^2 + 2n - 120 = 0 \Rightarrow n^2 + 12n - 10n - 120 = 0$ \Rightarrow $(n+12)(n-10) = 0 \Rightarrow n = 10$ So, 10 rows required to put 120 pairs. (ii) (b): No. of pairs in 17^{th} row = t_{17} = 3 + 16(2) = 35 No. of pairs in 10^{th} row = $t_{10} = 3 + 9(2) = 21$ \therefore Required difference = 35 - 21 = 14(iii) (c) : Here *n* = 15 $\therefore t_{15} = 3 + 14(2) = 3 + 28 = 31$ (iv) (a) : No. of pairs in 30^{th} row = $t_{30} = 3 + 29(2) = 61$ (v) (c) : No. of pairs in 5^{th} row = $t_5 = 3 + 4(2) = 11$ No. of pairs in 8th row = $t_8 = 3 + 7(2) = 17$ \therefore Required sum = 11 + 17 = 28 **20.** Here $S_n = 0.1n^2 + 7.9n$ (i) (c) : $S_{n-1} = 0.1(n-1)^2 + 7.9(n-1)$ $= 0.1n^2 + 7.7n - 7.8$ (ii) (b): $S_1 = t_1 = a = 0.1(1)^2 + 7.9(1) = 8 \text{ cm}$ = Diameter of core So, radius of the core = 4 cm

(iii) (a) : $S_2 = 0.1(2)^2 + 7.9(2) = 16.2$

- (iv) (d): Required diameter = $t_2 = S_2 S_1 = 16.2 8$ = 8.2 cm
- (v) (c) : As $d = t_2 t_1 = 8.2 8 = 0.2$ cm So, thickness of tissue = $0.2 \div 2 = 0.1$ cm = 1 mm 21. Here, first term a = 7Common difference, d = 13 - 7 = 6Let the given A.P. contains *n* terms, then $a_n = 187$ (∵ Given) $\Rightarrow a + (n - 1)d = 187$ $\Rightarrow 7 + (n - 1)6 = 187 \Rightarrow (n - 1)6 = 180$ $\Rightarrow n - 1 = 30 \Rightarrow n = 30 + 1 = 31$ Thus, the given A.P. contains 31 terms. Here n = 31 (odd number) \therefore Middle term $= \frac{1}{2}(n + 1)^{\text{th}}$. $= \frac{1}{2}(31 + 1)^{\text{th}} = (\frac{1}{2} \times 32)^{\text{th}} = 16^{\text{th}}$ Hence, middle term, a_{16} $= a + 15d = 7 + 15 \times 6 = 7 + 90 = 97$ 22. The given A.P. is 27, 23, 19,..., -65.

Here, first term, a = 27, common difference, d = 23 - 27 = -4, last term, l = -65Now, n^{th} term from the end = l - (n - 1)d

 \therefore 11th term from the end = -65 -(11 - 1)(-4)

2

= -65 - (10) (-4) = -65 + 40 = -25Hence, the 11th term from the end is -25.

OR

Given, A.P. is 115, 110, 105, ... Here, a = 115, d = 110 - 115 = -5Let n^{th} term of the given A.P. be the first negative term.

 $i.e., a_n < 0 \Longrightarrow a + (n-1)d < 0$

 $\Rightarrow 115 + (n-1)(-5) < 0$

- $\Rightarrow \quad 115-5n+5 \le 0 \Rightarrow 120-5n \le 0$
- $\Rightarrow \quad 5n > 120 \Rightarrow n > 24 \Rightarrow n \ge 25$

 \therefore 25th term of the given A.P. will be the first negative term.

23. Let a = 2 be the first term and d be the common difference of the A.P.

Given, 10th term of the A.P. is 47.

$$\therefore \quad a_{10} = 2 + (10 - 1)d \qquad [\because a_n = a + (n - 1)d]$$
$$\Rightarrow \quad 47 = 2 + 9d \Rightarrow 9d = 45 \Rightarrow d = 5$$

Now,
$$S_{15} = \frac{15}{2} [2a + (15 - 1)d] \left[\because S_n = \frac{n}{2} [2a + (n - 1)d] \right]$$

= $\frac{15}{2} [2 \times 2 + 14 \times 5] = \frac{15}{2} [4 + 70] = \frac{15}{2} \times 74 = 15 \times 37 = 555$

Hence, the sum of 15 terms of the given A.P. is 555.

24. Given A.P. is 3, 7, 11, 15, Here, *a* = 3, *d* = 7 – 3 = 4 Let sum of *n* terms is 406.

- $\therefore \quad S_n = \frac{n}{2} [2a + (n-1)d]$
- $\Rightarrow 406 = \frac{n}{2}[2(3) + (n-1)(4)]$
- $\Rightarrow 406 = n[1+2n] \Rightarrow 2n^2 + n 406 = 0$
- $\Rightarrow 2n^2 + 29n 28n 406 = 0$

$$\Rightarrow n(2n+29) - 14(2n+29) = 0 \Rightarrow (n-14)(2n+29) = 0$$

 \Rightarrow *n* = 14 [Since, *n* can't be a fraction]

25. Given, $S_n = 2n^2 + 3n$

We know that,
$$a_n = S_n - S_{n-1}$$

$$\therefore \quad a_{16} = S_{16} - S_{15} = [2(16)^2 + 3(16)] - [2(15)^2 + 3(15)]$$

= [2(256) + 3(16)] - [2(225) + 3(15)]

= [512 + 48] - [450 + 45] = 560 - 495 = 65

26. Sum of all natural numbers from 1 to 1000 which are not divisible by $5 = (Sum of all natural numbers from 1 to 1000, <math>S_n) - (Sum of all natural numbers from 1 to 1000 which are divisible by 5, <math>S_n')$

Now, all the natural numbers from 1 to 1000 are 1, 2, 3, ..., 1000, which is an A.P. where a = 1, l = 1000 and n = 1000

$$S_n = \frac{n}{2} [a+l]$$

$$= \frac{1000}{2} [1+1000] = 500 \times 1001 = 500500 \qquad \dots (i)$$

Again, all the natural numbers from 1 to 1000 which are divisible by 5 are 5, 10, 15,, 1000, which is also an A.P. where, first term, a = 5, last term, l = 1000 and common difference, d = 5

$$\therefore a_n = a + (n - 1)d \implies 1000 = 5 + (n - 1)5$$

⇒ 5n = 1000 ⇒ n = 200

$$\therefore S'_n = \frac{n}{2}[a + l] = \frac{200}{2}[5 + 1000] = 100 \times 1005 = 100500$$

...(ii)
∴ Required sum = S S' = 500500 + 100500 = 400000

- :. Required sum = $S_n S_n = 500500 100500 = 400000$
- **27.** Given, *a* = 100

Let *d* be the common difference of the A.P. According to the question,

100 + (100 + d) + (100 + 2d) + (100 + 3d) + (100 + 4d)+ (100 + 5d) = 5[(100 + 6d) + (100 + 7d) + (100 + 8d) + (100 + 9d) + (100 + 10d) + (100 + 11d)]

- $\Rightarrow 600 + 15d = 5(600 + 51d)$
- $\Rightarrow 120 + 3d = 600 + 51d \Rightarrow -48d = 480 \Rightarrow d = -10$

28. Let *a* and *d* be the first term and common difference of the A.P.

$$S_n = \frac{n}{2} [2a + (n-1)d]$$

Consider,
$$S_{10} - S_5 = \frac{10}{2} [2a + 9d] - \frac{5}{2} [2a + 4d]$$

= $5(2a + 9d) - 5(a + 2d)$
= $5[2a + 9d - a - 2d] = 5(a + 7d)$... (i)
Also, $S_{15} = \frac{15}{2} [2a + 14d] = 15(a + 7d) = 3[5(a + 7d)]$
= $3(S_{10} - S_5)$ (From (i))

Let *a* be the first term and *d* be the common difference of given A.P. Then

$$(p+q)^{\text{th}} \text{ term, } a_{p+q} = a + (p+q-1)d \qquad \dots(1)$$

and $(p-q)^{\text{th}} \text{ term, } a_{p-q} = a + (p-q-1)d \qquad \dots(ii)$
 \therefore Sum of $(p+q)^{\text{th}}$ and $(p-q)^{\text{th}}$ terms $= a_{p+q} + a_{p-q}$
 $= [a + (p+q-1)d] + [a + (p-q-1)d] \qquad [Using (i) and (ii)]$
 $= 2a + (p+q-1+p-q-1)d = 2 \times p^{\text{th}}$ term of the A.P.
29. Given, A.P. is 8, 10, 12,...
Here, first term, $a = 8$ and common difference $(d) = 10 - 8 = 2$
If the given A.P. has a total 60 terms, then
 $a_{60} = a + 59d \qquad [\because a_n = a + (n-1)d]$
 $= 8 + 59 \times 2 = 8 + 118 = 126$

Sum of the last 10 terms of the given A.P.

$$= a_{51} + a_{52} + \dots + a_{60} = (a + 50d) + (a + 51d) + \dots + 126$$

= (8 + 100) + (8 + 102) + ... + 126 = 108 + 110 + ... + 126

$$= \frac{10}{2} [108 + 126] \qquad \left[\because S_n = \frac{n}{2} (\text{First term + Last term}) \right]$$

= 5 × 234 = 1170

30. Let the four parts be (*a* – 3*d*), (*a* – *d*), (*a* + *d*), (*a* + 3*d*). Sum of the numbers = 56

$$\Rightarrow$$
 $(a - 3d) + (a - d) + (a + d) + (a + 3d) = 56$

MtG 100 PERCENT Mathematics Class-10

$$\Rightarrow 4a = 56 \Rightarrow a = 14$$
Also, $\frac{(a-3d)(a+3d)}{(a-d)(a+d)} = \frac{5}{6}$ [Given] $\Rightarrow \frac{a^2 - 9d^2}{a^2 - d^2} = \frac{5}{6}$

$$\Rightarrow 6(196 - 9d^2) = 5(196 - d^2) \qquad [\because a = 14]$$

$$\Rightarrow 6 \times 196 - 54d^2 = 5 \times 196 - 5d^2$$

$$\Rightarrow 49d^2 = 6 \times 196 - 5 \times 196 \Rightarrow 49d^2 = 196$$

$$\Rightarrow d^2 = 4 \Rightarrow d = \pm 2$$

$$\therefore \text{ Required four parts are}$$
 $(14 - 3 \times 2), (14 - 2), (14 + 2), (14 + 3 \times 2)$
or $[(14 - 3(-2)], (14 + 2), (14 - 2), [(14 + 3(-2)]].$

i.e., 8, 12, 16, 20 or 20, 16, 12, 8

31. The given sequence is 12000, 16000, 20000, , which is an A.P.

Here first term, a = 12000, common difference, d = 4000, $S_n = 1000000$

Let the man saves \gtrless 1000000 in *n* years.

Now,
$$S_n = \frac{\pi}{2} [2a + (n-1)d]$$

ท

$$\Rightarrow \quad 1000000 = \frac{n}{2} [2 \times 12000 + (n-1)4000]$$

$$\Rightarrow \quad 1000 = \frac{n}{2} [24 + 4n - 4] \Rightarrow 1000 = \frac{n}{2} \times 4(n+5)$$

$$\Rightarrow 500 = n^2 + 5n \Rightarrow n^2 + 5n - 500 = 0$$

$$\Rightarrow n^{2} + 25n - 20n - 500 = 0 \Rightarrow (n + 25)(n - 20) = 0$$

- \Rightarrow *n* = 20 (as *n* can't be negative)
- ∴ Man saves ₹ 1000000 in 20 years.

OR

Total amount of ten prizes = ₹1600 Let the value of first prize be ₹ *x* According to the question, prizes are $x, x - 20, x - 40 \dots$ to 9 terms Here, a = x, d = -20 and n = 10

$$\therefore \quad S_n = \frac{n}{2} [2a + (n-1)d]$$

$$\Rightarrow \quad 1600 = \frac{10}{2} [2x + (10 - 1)(-20)] = 10(x - 90)$$

 \Rightarrow 160 = x - 90 \Rightarrow x = 160 + 90 = 250

32. Let *a* and *d* are respectively the first term and common difference of an A.P.; *a*, *a* + *d*, *a* + 2*d*,... Given, 14^{th} term of an A.P. is twice its 8^{th} term.

$$\therefore a_{14} = 2a_8 \Rightarrow a + (14 - 1)d = 2[a + (8 - 1)d] \Rightarrow a + 13d = 2a + 14d \Rightarrow 2a - a = (13 - 14)d \Rightarrow a = -d ...(i) Also, $a_6 = -8$ (Given)
 $\Rightarrow a + (6 - 1)d = -8 \Rightarrow -d + 5d = -8$ [Using (i)]
 $\Rightarrow 4d = -8 \Rightarrow d = -2$
From (i), $a = -(-2) = 2$
Therefore, the A.P. is 2, 2 + (-2), 2 + 2(-2), 2 + 3(-2), ...i.e., 2, 0, -2, -4, ...
 $\therefore c = -\frac{n}{2}[2a + (n - 1)d]$$$

$$S_n = \frac{n}{2} [2a + (n-1)d]$$

$$S_{20} = \frac{20}{2} [2 \times 2 + (20 - 1)(-2)]$$
$$= 10[4 - 38] = 10(-34) = -340$$

33. Here, 8 and 20 are the first term and common difference respectively of an A.P.

:
$$S_n = \frac{n}{2} [2(8) + (n-1)20] = 8n + 10n^2 - 10n$$

= $10n^2 - 2n$...(i)

Also, –30 and 8 are the first term and common difference respectively of another A.P.

$$S_{2n} = \frac{2n}{2} [2(-30) + (2n-1)8] = -60n + 16n^2 - 8n = 16n^2 - 68n \qquad \dots (ii)$$

According to the question, $S_n = S_{2n}$

- $\Rightarrow 16n^2 68n = 10n^2 2n$ [From (i) and (ii)]
- $\Rightarrow 16n^2 10n^2 68n + 2n = 0$
- $\Rightarrow 6n^2 66n = 0 \Rightarrow 6n(n 11) = 0$
- \Rightarrow Either n 11 = 0 or $n = 0 \Rightarrow n = 11$ or n = 0
- \therefore *n* = 0 is not possible.
- Hence, value of *n* is 11.

OR

Consider the sequence, 2, 5, 8, 11, ..., x, which is an A.P. Here, a = 2, d = 3, $a_n = x$

$$\therefore a_n = a + (n-1)d \Rightarrow x = 2 + (n-1)3$$

$$\Rightarrow x = 2 + 3n - 3 \Rightarrow x + 1 = 3n \Rightarrow n = \frac{x+1}{3}$$

$$\therefore S_n = \frac{n}{2}[a+1] \Rightarrow 345 = \frac{x+1}{3\times 2}[2+x] [\text{Given}, S_n = 345]$$

$$\Rightarrow (x+1)(x+2) = 2070 \Rightarrow x^2 + 3x - 2068 = 0$$

$$\Rightarrow x = \frac{-3 \pm \sqrt{9+8272}}{2} = \frac{-3 \pm \sqrt{8281}}{2} = \frac{-3 \pm 91}{2} = 44, -47$$

Since, the given A.P. is an increasing A.P. with a = 2 and d = 3, so x can't be negative.

 $\therefore x = 44$

34. Let a = 8 years be the first term of the A.P.

i.e., age of the youngest boy participating in a painting competition.

Common difference, *d i.e.*, age difference of the participants = 4 months (given)

$$=\frac{4}{12}$$
 year $=\frac{1}{3}$ year

Let *n* be the total number of participants in the painting competition and S_n denotes the sum of ages of all the participants. Then, $S_n = 168$ years (given)

$$S_n = \frac{n}{2} [2a + (n-1)d]$$

$$\Rightarrow \quad 168 = \frac{n}{2} \left[2 \times 8 + (n-1) \left(\frac{1}{3}\right) \right]$$

$$\Rightarrow \quad 336 = n \left[16 + (n-1) \left(\frac{1}{3}\right) \right]$$

$$\Rightarrow \quad 336 \times 3 = n [48 + (n-1)] \Rightarrow 1008 = 48n + n(n-1)$$

$$\Rightarrow \quad 1008 = 48n + n^2 - n \Rightarrow n^2 + 47n - 1008 = 0$$

Arithmetic Progressions

 $\Rightarrow n^{2} + 63n - 16n - 1008 = 0 \Rightarrow n(n + 63) - 16(n + 63) = 0$

$$\Rightarrow (n-16)(n+63) = 0$$

- $\Rightarrow \text{ Either } n 16 = 0 \text{ or } n + 63 = 0$
- \Rightarrow Either n = 16 or n = -63
- \Rightarrow *n* = 16, rejecting *n* = -63 as *n* can't be negative.
- \therefore Age of eldest participant is a_{16} .

Now,
$$a_{16} = 8 + (16 - 1) \times \frac{1}{3}$$
 [:: $a_n = a + (n - 1)d$]
= $8 + \frac{15}{3} = 8 + 5 = 13$ years

Hence, the total number of participants are 16 and the age of the eldest participant is 13 years.

35. Original cost of house = ₹2200000
Amount paid in cash = ₹400000
Balance to be paid = ₹(2200000 - 400000) = ₹1800000
Amount paid in each installment = ₹100000
∴ Number of installments = 18

Interest paid with 1st installment = $1800000 \times \frac{10}{100}$ = ₹ 180000

Interest paid with 2^{nd} installment = $1700000 \times \frac{10}{100}$ = ₹ 170000

and so on

Interest paid with last installment = $100000 \times \frac{10}{100}$ = ₹ 10000 Total interest paid = (180000 + 170000 + + 10000), which is an A.P. with first term, *a* = 180000, last term, *l* = 10000.

= 9[190000] = ₹ 1710000

... Total cost of house for Ronit

= ₹ (2200000 + 1710000) = ₹ 3910000

OR

Since, the A.P. consists of 37 terms, so 19th term is the middle term.

Let $a_{19} = a$ and *d* be the common difference of the A.P. The A.P. is ; a - 18d, a - 17d,..., a - d, a, a + d,..., a + 17d, a + 18dSum of the three middle most terms = 225 (a - d) + a + (a + d) = 225 \Rightarrow $3a = 225 \implies a = 75$ \Rightarrow ...(i) Sum of the three last terms = 429(a + 18d) + (a + 17d) + (a + 16d) = 429 \Rightarrow $3a + 51d = 429 \Rightarrow a + 17d = 143$ \Rightarrow 17d = 143 - a = 143 - 75(Using (i)) \Rightarrow $17d = 68 \implies d = \frac{68}{17} = 4$ \Rightarrow Now, first term = *a* – 18*d* = 75 – 18 × 4 = 3 The A.P. is 3, 7, 11, ..., 147. *.*..

MtG BEST SELLING BOOKS FOR CLASS 10

10

NCERT

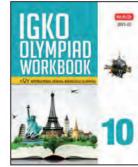
F⁴NGERTIPS

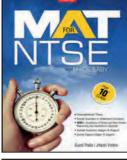
MATHEMATICS

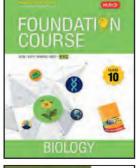
10

MATHEMATICS









Visit www.mtg.in for complete information