Constructions

SOLUTIONS

EXERCISE - 11.1

1. Steps of Construction

Step 1: Draw a line segment AB = 7.6 cm.

Step 2: Draw a ray AX making an acute angle with AB.

Step 3: Locate 13 (8 + 5) points at equal distance on AX

and mark them as X_1 , X_2 , X_3 ,, X_{13} .

Step 4: Join X_{13} to B.

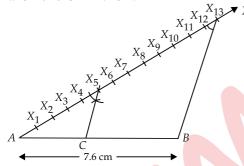
Step 5: From point X_5 , draw $X_5C \mid\mid X_{13}B$, which meets

AB at C.

Thus, C divides AB in the ratio 5:8.

On measuring the two parts, we get

AC = 2.9 cm and CB = 4.7 cm.



Justification:

In $\triangle ABX_{13}$ and $\triangle ACX_5$, we have $CX_5 \parallel BX_{13}$

$$\therefore \frac{AC}{CB} = \frac{AX_5}{X_5 X_{13}} = \frac{5}{8}$$

[By Thales theorem]

$$\Rightarrow$$
 AC: CB = 5:8.

2. Steps of Construction

Step 1: Draw a $\triangle ABC$ such that BC = 6 cm, AC = 5 cm and AB = 4 cm.

Step 2: Draw a ray BX making an acute angle $\angle CBX$.

Step 3: Mark three points X_1 , X_2 , X_3 on BX such that $BX_1 = X_1X_2 = X_2X_3$.

Step 4: Join X_3C .

Step 5: Draw a line through X_2 such that it is parallel to X_1 and mosts RC at C'

 X_3C and meets BC at C'. **Step 6:** Draw a line through

C' parallel to CA to intersect BA at A'.

Thus, $\Delta A'BC'$ is the required similar triangle.

Justification:

By construction, we have $X_3C \mid\mid X_2C$

$$\Rightarrow \frac{BX_2}{X_2X_3} = \frac{BC'}{C'C}$$

[Using Thales theorem]

But
$$\frac{BX_2}{X_2X_3} = \frac{2}{1}$$

 $\Rightarrow \frac{BC'}{C'C} = \frac{2}{1} \Rightarrow \frac{C'C}{BC'} = \frac{1}{2}$

Adding 1 to both sides, we get

$$\frac{C'C}{BC'} + 1 = \frac{1}{2} + 1 \implies \frac{C'C + BC'}{BC'} = \frac{1+2}{2} \implies \frac{BC}{BC'} = \frac{3}{2}$$

Now, in $\triangle BC'A'$ and $\triangle BCA$, we have $CA \parallel C'A'$

.. Using AA similarity, we have $\Delta BC'A' \sim \Delta BCA$

$$\Rightarrow \frac{A'B}{AB} = \frac{A'C'}{AC} = \frac{BC'}{BC} = \frac{2}{3}$$

3. Steps of Construction

Step 1: Construct a $\triangle ABC$ such that AB = 5 cm, BC = 7 cm and AC = 6 cm.

Step 2: Draw a ray BX such that $\angle CBX$ is an acute angle

Step 3: Mark 7 points X_1 , X_2 , X_3 , X_4 , X_5 , X_6 and X_7 on BX such that $BX_1 = X_1X_2 = X_2X_3 = X_3X_4 = X_4X_5 = X_5X_6 = X_6X_7$.

= X_6X_7 . **Step 4:** Join X_5 to C.

Step 5: Draw a line through X_7 intersecting *BC* produced at *C'* such that $X_5C \mid\mid X_7C'$.

Step 6: Draw a line through *C'* parallel to *CA* to intersect *BA* produced at *A'*.

Thus, $\Delta A'BC'$ is the required triangle.

Justification:

By construction, we have $C'A' \parallel CA$

 \therefore Using AA similarity, $\triangle ABC \sim \triangle A'BC'$

$$\frac{A'B}{AB} = \frac{A'C'}{AC} = \frac{BC'}{BC}$$

Also,
$$X_7C' \mid\mid X_5C$$

[By construction]

$$\therefore \quad \Delta B X_7 C' \sim \Delta B X_5 C \implies \frac{BC}{BC'} = \frac{BX_5}{BX_7}$$

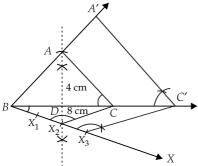
But
$$\frac{BX_5}{BX_7} = \frac{5}{7} \Rightarrow \frac{BC}{BC'} = \frac{5}{7}$$
 or $\frac{BC'}{BC} = \frac{7}{5}$

$$\therefore \frac{A'B}{AB} = \frac{A'C'}{AC} = \frac{BC'}{BC} = \frac{7}{5}$$

4. Steps of Construction

Step 1: Draw BC = 8 cm.

Step 2: Draw the perpendicular bisector of *BC* which intersects *BC* at *D*.



Step 3: Mark a point *A* on the perpendicular above BC such that DA = 4 cm.

Step 4: Join AB and AC.

Thus, $\triangle ABC$ is the required isosceles triangle.

Step 5: Now, draw a ray BX such that $\angle CBX$ is an acute angle.

Step 6: On BX, mark three points X_1 , X_2 and X_3 such that $BX_1 = X_1 X_2 = X_2 X_3$.

Step 7 : Join X_2C .

Step 8: Draw a line through X_3 parallel to X_2 C intersecting BC extended at C'.

Step 9: Draw a line through C' parallel to CA intersecting BA extended at A'.

Thus, $\Delta A'BC'$ is the required triangle.

Justification:

We have *C'A'* || *CA* [By construction] Using AA similarity, $\Delta A'BC' \sim \Delta ABC$

$$\Rightarrow \frac{A'B}{AB} = \frac{A'C'}{AC} = \frac{BC'}{BC} \qquad \dots (i)$$

In $\triangle BX_3C'$, $X_3C' \mid\mid X_2C$ [By construction]

$$\Rightarrow \frac{BC'}{BC} = \frac{BX_3}{BX_2}$$

$$BX_2 = 3$$

$$BC' = 3$$
[By BPT]

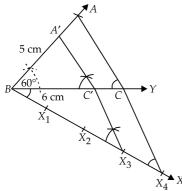
But
$$\frac{BX_3}{BX_2} = \frac{3}{2} \Rightarrow \frac{BC'}{BC} = \frac{3}{2}$$

Thus, by (i)
$$\frac{A'B}{AB} = \frac{A'C'}{AC} = \frac{BC'}{BC} = \frac{3}{2}$$

Steps of Construction

Step 1 : Construct a $\triangle ABC$ such that BC = 6 cm, AB = 5 cm and $\angle ABC = 60^{\circ}$.

Step 2: Draw a ray BX such that $\angle CBX$ is an acute angle.



Step 3: Along BX, mark four points X_1 , X_2 , X_3 , X_4 such that $BX_1 = X_1X_2 = X_2X_3 = X_3X_4$.

Step 4: Join X_4C and draw a line through X_3 parallel to X_4C to intersect BC at C'.

Step 5: Draw line through *C'* parallel to *CA* to intersect BA at A'.

Thus, $\Delta A'BC'$ is the required triangle.

Justification:

In $\Delta B X_4 C$, we have

$$X_4C \parallel X_3C'$$
 [By construction]

$$\therefore \frac{BX_3}{BX_4} = \frac{BC'}{BC}$$
 [By BPT]

But
$$\frac{BX_3}{BX_4} = \frac{3}{4}$$
 [By construction]

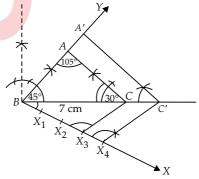
$$\Rightarrow \frac{BC'}{BC} = \frac{3}{4} \qquad ...(i)$$

Also, $CA \parallel C'A'$ [By construction] $\therefore \Delta BC'A' \sim \Delta BCA$ [Using AA similarity] $\frac{A'B}{AB} = \frac{A'C'}{AC} = \frac{BC'}{BC} = \frac{3}{4}$ [From (i)]

Steps of Construction

Step 1: Construct a $\triangle ABC$ such that BC = 7 cm, $\angle B = 45^{\circ}$, $\angle A = 105^{\circ}$ and $\angle C = 30^{\circ}$.

Step 2: Draw a ray BX making an acute angle $\angle CBX$ with BC.



Step 3: On *BX*, mark four points X_1 , X_2 , X_3 and X_4 such that $BX_1 = X_1X_2 = X_2X_3 = X_3X_4$.

Step 4: Join X_3C .

Step 5: Draw a line through X_4 parallel to X_3C intersecting BC extended at C'.

Step 6: Draw a line through C' parallel to CA intersecting the extended line segment *BA* at *A*′.

Thus, $\Delta A'BC'$ is the required triangle.

Justification:

By construction, we have

 $C'A' \mid\mid CA$

$$\therefore \quad \triangle ABC \sim \triangle A'BC' \qquad [AA \text{ similarity}]$$

$$\Rightarrow \quad \frac{A'B}{AB} = \frac{A'C'}{AC} = \frac{BC'}{BC} \qquad \dots(i)$$

Also, in $\Delta BX_{4}C'$,

Also, iff
$$\Delta B X_4 C$$
,
 $X_4 C' \mid \mid X_3 C$ [By construction]
 $\therefore \Delta B X_4 C' \sim \Delta B X_3 C$ [AA similarity]
 $\therefore \frac{BC'}{PC} = \frac{BX_4}{PX}$

But
$$\frac{BX_4}{BX_3} = \frac{4}{3} \implies \frac{BC'}{BC} = \frac{4}{3}$$
 ...(ii)

From (i) and (ii), we have

$$\frac{A'B}{AB} = \frac{A'C'}{AC} = \frac{BC'}{BC} = \frac{4}{3}.$$

7. Steps of Construction

Step 1: Construct the right triangle PQR such that $\angle Q = 90^{\circ}$, PQ = 4 cm and QR = 3 cm.

Step 2: Draw a ray QX such that an acute angle $\angle PQX$ is formed.

Step 3: Mark 5 points X_1 , X_2 , X_3 , X_4 and X_5 on QX such that $QX_1 = X_1X_2 = X_2X_3 = X_3X_4 = X_4X_5$.

Step 4: Join X_3P .

Step 5: Draw a line through X_5 parallel to X_3P intersecting the extended line segment QP at P'.

Step 6: Draw another line through P' parallel to PR intersecting the extended line segment QR at R'.

Thus, $\Delta P'QR'$ is the required triangle.

Justification:

By construction, we have

 $P'R' \mid\mid PR$

$$\therefore \quad \Delta RQP \sim \Delta R'QP'$$

[AA similarity]

$$\Rightarrow \quad \frac{R'Q}{RQ} = \frac{R'P'}{RP} = \frac{QP'}{QP}$$

...(i)

Also, in
$$\Delta Q X_5 P'$$
, $X_5 P' \mid\mid X_3 P$

[By construction]

$$\therefore \quad \Delta Q X_5 P' \sim \Delta Q X_3 P$$

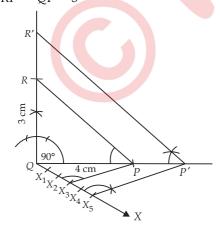
[AA similarity]

$$\therefore \frac{QP'}{QP} = \frac{QX_5}{QX_3}$$

But
$$\frac{QX_5}{QX_3} = \frac{5}{3} \Rightarrow \frac{QP'}{QP} = \frac{5}{3}$$
 ...(ii)

From (i) and (ii), we get

$$\frac{R'Q}{RQ} = \frac{R'P'}{RP} = \frac{QP'}{QP} = \frac{5}{3}$$



EXERCISE - 11.2

1. Steps of Construction

Step 1: Draw a circle of radius 6 cm. Mark its centre as O. **Step 2:** Take a point P such that OP = 10 cm. Join OP.

Step 3: Bisect *OP* and let *M* be its mid-point.

Step 4: Taking *M* as centre and *MP* or *MO* as radius, draw a circle. Let the new circle intersects the given circle at *A* and *B*.

Step 5: Join *PA* and *PB*.

Thus, *PA* and *PB* are the required tangents.

By measurement, we have PA = PB = 8 cm.

Justification:

Join OA and OB

Since PO is a diameter.

 \therefore $\angle OAP = 90^{\circ} = \angle OBP$ [Angles in a semi-circle]

Also, *OA* and *OB* are radii of the same circle.

 \Rightarrow PA and PB are tangents to the circle.

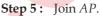
2. Steps of Construction

Step 1: Draw two concentric circles with centre *O* and radii 4 cm and 6 cm.

Step 2: Take any point *P* on outer circle.

Step 3: Join *PO* and bisect it and let the mid-point of *PO* is represented by *M*.

Step 4: Taking *M* as centre and *OM* or *MP* as radius, draw a circle such that this circle intersects the inner circle (of radius 4 cm) at *A* and *B*.



Thus, *PA* is the required tangent.

By measurement, we have PA = 4.5 cm.

Justification:

Join OA. As PO is diameter,

 $\therefore \angle PAO = 90^{\circ}$

 $\Rightarrow PA \perp OA$

: OA is a radius of the inner circle.

:. *PA* has to be a tangent to the inner circle.

Verification of length of PA: In right ΔPAO , PO = 6 cm, OA = 4 cm.

$$\therefore PA = \sqrt{6^2 - 4^2} = \sqrt{36 - 16} = \sqrt{20} = 4.47 \text{ cm}$$

Hence both lengths are approximately equal.

3. Steps of Construction

Step 1: Draw a circle of radius 3 cm with centre *O* and draw a diameter.

Step 2: Extend its diameter on both sides such that OP = OO = 7 cm.

Step 3: Bisect *PO* such that *M* be its mid-point.

Step 4: Taking *M* as centre and *MO* as radius, draw a circle. Let it intersect the given circle at *A* and *B*.

Step 5: Join *PA* and *PB*.

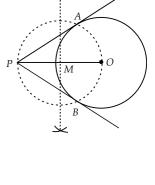
Thus, *PA* and *PB* are the two required tangents from *P*.

Step 6: Now bisect *OQ* such that *N* be its mid-point.

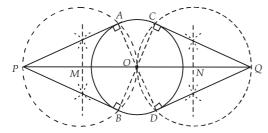
Step 7: Taking *N* as centre and *NO* as radius, draw a circle. Let it intersect the given circle at *C* and *D*.

Step 8: Join *QC* and *QD*.

Thus, *QC* and *QD* are the required tangents from *Q*.



[Angle in a semi-circle]



Justification:

Join *OA* to get $\angle OAP = 90^{\circ}$ [Angle in a semi-circle] $\Rightarrow PA \perp OA \Rightarrow PA$ is a tangent.

Similarly, $PB \perp OB \Rightarrow PB$ is a tangent.

Now, join OC to get $\angle QCO = 90^{\circ}$ [Angle in a semi-circle] $\Rightarrow QC \perp OC \Rightarrow QC$ is a tangent.

Similarly, $QD \perp OD \Rightarrow QD$ is a tangent.

4. Steps of Construction

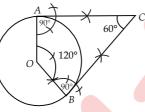
Step 1: With centre *O* and radius 5 cm, draw a circle.

Step 2 : Taking a point *A* on the circle draw $\angle AOB = 120^{\circ}$.

Step 3 : Draw a perpendicular on *OA* at *A*.

Step 4: Draw another perpendicular on *OB* at *B*.

Step 5: Let the two perpendiculars meet at *C*. Thus, *CA* and *CB* are the two required tangents to the given circle which are inclined to each other at 60°.



Justification:

In a quadrilateral *OACB*, using angle sum property, we have

 $\angle AOB + \angle OAC + \angle OBC + \angle ACB = 360^{\circ}$

 \Rightarrow 120° + 90° + 90° + $\angle ACB = 360°$

 \Rightarrow 300° + $\angle ACB = 360° \Rightarrow \angle ACB = 360° - 300° = 60°.$

5. Steps of Construction

Step 1: Draw a line segment AB = 8 cm.

Step 2: Draw a circle with centre *A* and radius 4 cm, draw another circle with centre *B* and radius 3 cm.

Step 3: Bisect the line segment *AB*. Let its mid-point be *M*.

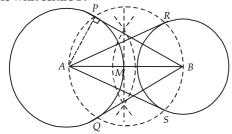
Step 4: With centre as *M* and *MA* (or *MB*) as radius, draw a circle such that it intersects the two circles at points *P*, *Q*, *R* and *S*.

Step 5: Join BP and BQ.

Thus, *BP* and *BQ* are the required two tangents from *B* to the circle with centre *A*.

Step 6: Join *RA* and *SA*.

Thus, *RA* and *SA* are the required two tangents from *A* to the circle with centre *B*.



Justification: Let us join *A* and *P*.

 \therefore $\angle APB = 90^{\circ}$ [Angle in a semi-circle]

 $\therefore BP \perp AP$

But *AP* is radius of the circle with centre *A*.

 \Rightarrow *BP* has to be a tangent to the circle with centre *A*. Similarly, *BQ* has to be tangent to the circle with centre *A*. Also, *AR* and *AS* are tangents to the circle with centre *B*.

6. Steps of Construction

Step 1: Draw $\triangle ABC$ such that AB = 6 cm, BC = 8 cm and $\angle B = 90^{\circ}$.

Step 2: Draw $BD \perp AC$. Now, bisect BC and let its mid-point be O.

With *O* as centre *OB* as radius, draw the circle passing through *B*, *C* and *D*.

Step 3: Join AO.

Step 4: Bisect *AO*. Let *M* be the mid-point of *AO*.

Step 5 : Taking *M* as centre and *MA* as radius, draw a circle intersecting the given circle at *B* and *E*.

Step 6: Join *AB* and *AE*.

Thus, *AB* and *AE* are the required two tangents to the given circle from *A*.

Justification:

Join *OE*, then $\angle AEO = 90^{\circ}$ [Angle in a semi-circle]

 $AE \perp OE$.

But *OE* is a radius of the given circle.

 \Rightarrow AE has to be a tangent to the circle.

Similarly, *AB* is also a tangent to the given circle.

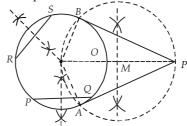
7. Steps of Construction

Step 1: Draw a circle using a bangle.

Step 2: Draw two non parallel chords *PQ* and *RS* on this circle.

Step 3: Draw the perpendicular bisectors of *PQ* and *RS* such that they intersect at *O*. Therefore, *O* is the centre of the given circle.

Step 4: Take a point *P'* outside this circle.



Step 5: Join OP' and bisect it. Let M be the mid-point of OP'.

Step 6: Taking *M* as centre and *OM* as radius, draw a circle. Let it intersect the given circle at *A* and *B*.

Step 7: Join P'A and P'B. Thus, P'A and P'B are the required two tangents.

Justification: Join *OA* and *OB*.

Since $\angle OAP' = 90^{\circ}$ [Angle in a semi-circle]

 \therefore *P'A* \perp *OA*. Also *OA* is a radius.

 \therefore *P'A* has to be a tangent to the given circle. Similarly, *P'B* is also a tangent to the given circle.

MtG BEST SELLING BOOKS FOR CLASS 10

