Areas Related to Circles

SOLUTIONS

EXERCISE - 12.1

- Let $r_1 = 19 \text{ cm} \text{ and } r_2 = 9 \text{ cm}$
- Circumference of circle-I = $2\pi r_1$ = $2\pi(19)$ cm and circumference of circle-II = $2\pi r_2$ = 2π (9) cm Sum of the circumference of circle-I and circle-II $= 2\pi(19) + 2\pi(9) = 2\pi(19 + 9)$ cm $= 2\pi(28)$ cm Let *R* be the radius of the circle-III.
- Circumference of circle-III = $2\pi R$ According to the condition, $2\pi R = 2\pi(28)$

$$\Rightarrow R = \frac{2\pi(28)}{2\pi} = 28 \text{ cm}$$

Thus, the radius of the new circle = 28 cm.

- We have, Radius of circle-I, $r_1 = 8$ cm Radius of circle-II, $r_2 = 6$ cm
- Area of circle- $I = \pi r_1^2 = \pi (8)^2 \text{ cm}^2$

Area of circle-II = $\pi r_2^2 = \pi (6)^2 \text{ cm}^2$

Let the radius of the circle-III be *R*.

- Area of circle-III = πR^2
- Now, according to the given condition, we have

$$\pi r_1^2 + \pi r_2^2 = \pi R^2$$

$$\Rightarrow \pi (8)^2 + \pi (6)^2 = \pi R^2$$

- $\Rightarrow \pi(8^2 + 6^2) = \pi R^2$ $\Rightarrow 8^2 + 6^2 = R^2 \Rightarrow 64 + 36 = R^2$ $\Rightarrow 100 = R^2 \Rightarrow 10^2 = R^2 \Rightarrow R = 10$

Thus, the radius of the new circle = 10 cm.

- Diameter of the innermost region = 21 cm
- Radius of the innermost (Gold Scoring) region

$$=\frac{21}{2}=10.5$$
 cm

 \therefore Area of Gold region = $\pi (10.5)^2$ cm²

$$= \frac{22}{7} \times \left(\frac{105}{10}\right)^2 \text{cm}^2 = \frac{22}{7} \times \frac{105}{10} \times \frac{105}{10} \text{cm}^2$$

$$=\frac{22\times15\times105}{100}$$
 cm² = 346.50 cm²

- Area of the Red region = $\pi (10.5 + 10.5)^2 \pi (10.5)^2$
- $= \pi(21)^2 \pi(10.5)^2 = \pi[(21)^2 (10.5)^2]$
- = $\frac{22}{7}$ [(21 + 10.5) (21 10.5)]cm² = $\frac{22}{7}$ × 31.5 × 10.5 cm²
- $=22\times\frac{315}{10}\times\frac{15}{10}$ cm² = 1039.50 cm²

Since each band is 10.5 cm wide.

 \therefore Radius of Gold and Red region = (10.5 + 10.5) = 21 cm. Area of Blue region = $\pi[(21 + 10.5)^2 - (21)^2]$ cm²

$$=\frac{22}{7} [(31.5)^2 - (21)^2] \text{ cm}^2$$

 $=\frac{22}{7}[(31.5+21)(31.5-21)]\text{cm}^2 = \frac{22}{7} \times 52.5 \times 10.5 \text{ cm}^2$

$$=22\times\frac{75}{10}\times\frac{105}{10}$$
 cm² = 1732.50 cm²

Similarly, area of Black region

=
$$\pi[(31.5 + 10.5)^2 - (31.5)^2]$$
 cm² = $\frac{22}{7}$ [(42)² - (31.5)²] cm²

=
$$\frac{22}{7}$$
 [(42 - 31.5) (42 + 31.5)] cm² = $\frac{22}{7}$ × 10.5 × 73.5 cm²

$$=22\times\frac{15}{10}\times\frac{735}{10}$$
cm² = 2425.50 cm²

Area of White region

$$= \pi[(42 + 10.5)^2 - (42)^2] \text{ cm}^2 = \pi[(52.5)^2 - (42)^2] \text{ cm}^2$$

$$= \pi[(52.5 + 42)(52.5 - 42)] \text{ cm}^2$$

$$= \frac{22}{7} \times 94.5 \times 10.5 = 22 \times \frac{945}{10} \times \frac{15}{10} = 3118.5 \text{ cm}^2$$

- 4. Diameter of a wheel = 80 cm
- Radius of the wheel = $\frac{80}{2}$ = 40 cm
- So, circumference of the wheel = $2\pi r = 2 \times \frac{22}{7} \times 40$ cm
- Distance covered by a wheel in one revolution

$$=\frac{2\times22\times40}{7}$$
cm

Distance travelled by the car in 1 hour = 66 km

$$= 66 \times 1000 \times 100 \text{ cm}$$

Distance travelled in 10 minutes

$$= \frac{66 \times 1000 \times 100}{60} \times 10 \text{ cm} = 11 \times 100000 \text{ cm}$$

Now, number of revolutions

[Distance travelled in 10 minutes]
[Distance travelled in one revolution]

$$= \frac{[1100000]}{\left\lceil \frac{2 \times 22 \times 40}{7} \right\rceil} = \frac{1100000 \times 7}{2 \times 22 \times 40} = 4375$$

Thus, the required number of revolutions = 4375.

5. (a): We have, Area of the circle = Circumference of the circle

$$\Rightarrow \pi r^2 = 2\pi r \Rightarrow \pi r^2 - 2\pi r = 0$$

$$\Rightarrow r^2 - 2r = 0$$

$$\Rightarrow$$
 $r(r-2) = 0 \Rightarrow r = 0 \text{ or } r = 2$

But *r* cannot be zero

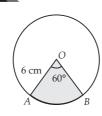
 \therefore r = 2 units.

Thus, the radius of circle is 2 units.

EXERCISE - 12.2

1. Here r = 6 cm and $\theta = 60^{\circ}$

$$\therefore \text{ Area of a sector} = \frac{\theta}{360^{\circ}} \times \pi r^2$$
$$= \frac{60^{\circ}}{360^{\circ}} \times \frac{22}{7} \times 6 \times 6 \text{ cm}^2$$
$$= \frac{22}{7} \times 6 \text{ cm}^2 = \frac{132}{7} \text{ cm}^2.$$

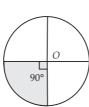


2. Let radius of the circle = r

Given, circumference of circle = 22 cm

$$\therefore 2\pi r = 22 \implies 2 \times \frac{22}{7} \times r = 22$$

$$\Rightarrow r = 22 \times \frac{7}{22} \times \frac{1}{2} = \frac{7}{2} \text{ cm}$$



Here, $\theta = 90^{\circ}$

:. Area of quadrant of the circle

$$= \frac{\theta}{360^{\circ}} \times \pi r^2 = \frac{90^{\circ}}{360^{\circ}} \times \frac{22}{7} \times \left(\frac{7}{2}\right)^2 \text{cm}^2$$

$$=\frac{1}{4}\times\frac{22}{7}\times\frac{7}{2}\times\frac{7}{2}$$
cm² $=\frac{77}{8}$ cm².

3. Length of minute hand = radius of the circle \Rightarrow r = 14 cm

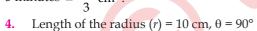
∴ Angle swept by the minute hand in 60 minutes = 360° ∴ Angle swept by the minute hand in 5 minutes

$$=\frac{360^{\circ}}{60^{\circ}} \times 5 = 30^{\circ}$$

Now, area of the sector with r = 14 cm and $\theta = 30^{\circ}$

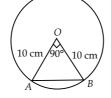
$$= \frac{\theta}{360^{\circ}} \times \pi r^{2} = \frac{30^{\circ}}{360^{\circ}} \times \frac{22}{7} \times 14 \times 14 \text{ cm}^{2}$$
$$= \frac{11 \times 14}{2} \text{ cm}^{2} = \frac{154}{2} \text{ cm}^{2}$$

Thus, the required area swept by the minute hand in 5 minutes = $\frac{154}{2}$ cm².



Area of the sector = $\frac{\theta}{360^{\circ}} \times \pi r^2$

$$= \frac{90^{\circ}}{360^{\circ}} \times \frac{314}{100} \times 10 \times 10 \text{ cm}^2$$



$$=\frac{1}{4}\times314 \text{ cm}^2 = \frac{157}{2}\text{cm}^2 = 78.5 \text{ cm}^2$$

(i) Area of the minor segment

= [Area of the minor sector] – [Area of right $\triangle AOB$]

=
$$[78.5 \text{ cm}^2] - \left[\frac{1}{2} \times 10 \times 10 \text{ cm}^2\right]$$

 $= 78.5 \text{ cm}^2 - 50 \text{ cm}^2 = 28.5 \text{ cm}^2$

(ii) Area of the major sector

= [Area of the circle] - [Area of the minor sector]

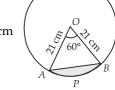
=
$$\pi r^2 - 78.5 \text{ cm}^2 = \left[\frac{314}{100} \times 10 \times 10 - 78.5 \right] \text{ cm}^2$$

 $= (314 - 78.5) \text{ cm}^2 = 235.5 \text{ cm}^2.$

5. Here, radius, r = 21 cm and $\theta = 60^{\circ}$

(i) Length of arc *APB*

$$= \frac{\theta}{360^{\circ}} \times 2\pi r = \left(\frac{60^{\circ}}{360^{\circ}} \times 2 \times \frac{22}{7} \times 21\right) \text{cm}$$
$$= \left(\frac{1}{6} \times 2 \times 22 \times 3\right) \text{cm}$$



$$= \left(\frac{1}{6} \times 132\right) \text{cm} = 22 \text{ cm}$$

(ii) Area of the sector with sector angle 60°

$$= \frac{\theta}{360^{\circ}} \times \pi r^2 = \frac{60^{\circ}}{360^{\circ}} \times \frac{22}{7} \times 21 \times 21 \text{ cm}^2$$

 $= 11 \times 21 \text{ cm}^2 = 231 \text{ cm}^2$

(iii) Area of the segment *APB*

= [Area of the sector AOBP] - [Area of $\triangle AOB$] ...(1) In $\triangle AOB$, OA = OB = 21 cm

$$\therefore \quad \angle A = \angle B = 60^{\circ}$$
 [:: $\angle O = 60^{\circ}$]

 \Rightarrow *AOB* is an equilateral triangle.

 $\therefore AB = 21 \text{ cm}$

$$\therefore \text{ Area of } \Delta AOB = \frac{\sqrt{3}}{4} (\text{side})^2$$

$$= \frac{\sqrt{3}}{4} \times 21 \times 21 \text{ cm}^2 = \frac{441\sqrt{3}}{4} \text{ cm}^2 \qquad \dots (2)$$

From (1) and (2), we have

Area of segment =
$$\left(231 - \frac{441\sqrt{3}}{4}\right)$$
 cm²

6. Here, radius (r) = 15 cm and Sector angle $(\theta) = 60^{\circ}$

$$\therefore \text{ Area of the sector } = \frac{\theta}{360^{\circ}} \times \pi r^2$$

$$= \frac{60^{\circ}}{360^{\circ}} \times \frac{314}{100} \times 15 \times 15 \text{ cm}^2 = \frac{157 \times 3}{4} = 117.75 \text{ cm}^2$$

Since $\angle O = 60^{\circ}$ and OA = OB = 15 cm

$$\Rightarrow \angle A = \angle B = 60^{\circ}$$

∴ *AOB* is an equilateral triangle.

$$\therefore AB = 15 \text{ cm}$$

Now, area of $\triangle AOB = \frac{\sqrt{3}}{4} \times (\text{side})^2$

$$= \frac{\sqrt{3}}{4} \times 15 \times 15 \text{ cm}^2 = \frac{225\sqrt{3}}{4} \text{ cm}^2$$
$$= \frac{225 \times 1.73}{4} \text{ cm}^2 = 97.3125 \text{ cm}^2$$

Now, area of the minor segment

= (Area of minor sector) – (Area of $\triangle AOB$)

 $= (117.75 - 97.3125) \text{ cm}^2 = 20.4375 \text{ cm}^2$

:. Area of the major segment

= [Area of the circle] - [Area of the minor segment]

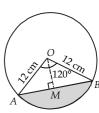
=
$$\pi r^2 - 20.4375 \text{ cm}^2 = \left[\frac{314}{100} \times 15^2\right] - 20.4375 \text{ cm}^2$$

 $= 706.5 - 20.4375 \text{ cm}^2 = 686.0625 \text{ cm}^2.$

7. Here, $\theta = 120^{\circ}$ and r = 12 cm

$$\therefore$$
 Area of the sector = $\frac{\theta}{360^{\circ}} \times \pi r^2$

$$= \frac{120^{\circ}}{360^{\circ}} \times \frac{314}{100} \times 12 \times 12 \text{ cm}^2$$



$$= \frac{314 \times 4 \times 12}{100} \text{ cm}^2 = \frac{15072}{100} \text{ cm}^2 = 150.72 \text{ cm}^2 \qquad \dots (1)$$

Draw, $OM \perp AB$

 \Rightarrow OM is the perpendicular bisector of AB.

$$\therefore AM = BM = \frac{1}{2}AB$$

In $\triangle AOB$, $\angle O = 120^{\circ}$

$$\Rightarrow$$
 $\angle A + \angle B = 180^{\circ} - 120^{\circ} = 60^{\circ}$

$$\therefore$$
 $OB = OA = 12 \text{ cm} \Rightarrow \angle A = \angle B = 30^{\circ}$

So,
$$\frac{OM}{OA} = \sin 30^\circ = \frac{1}{2} \Rightarrow OM = OA \times \frac{1}{2} = 12 \times \frac{1}{2} = 6 \text{ cm}$$

and
$$\frac{AM}{OA} = \cos 30^\circ = \frac{\sqrt{3}}{2}$$

$$\Rightarrow AM = \frac{\sqrt{3}}{2}OA = \frac{\sqrt{3}}{2} \times 12 = 6\sqrt{3} \text{ cm}$$

$$\therefore AB = 2AM = 12\sqrt{3} \text{ cm}$$

Now, area of $\triangle AOB = \frac{1}{2} \times AB \times OM$

$$=\frac{1}{2}\times12\sqrt{3}\times6 \text{ cm}^2=36\sqrt{3} \text{ cm}^2$$

$$= 36 \times 1.73 \text{ cm}^2 = 62.28 \text{ cm}^2$$

From (1) and (2), we have

Area of the minor segment

= [Area of sector] - [Area of
$$\triangle AOB$$
]

$$= [150.72 \text{ cm}^2] - [62.28 \text{ cm}^2] = 88.44 \text{ cm}^2$$

Here, length of the rope = 5 m

 \therefore Radius of the circular region grazed by the horse = 5 m

Area of the circular portion grazed

$$= \frac{\theta}{360^{\circ}} \times \pi r^{2} = \frac{90^{\circ}}{360^{\circ}} \times \frac{314}{100} \times 5 \times 5 \text{ m}^{2} = \frac{1}{4} \times \frac{314}{4} \text{ m}^{2}$$

$$=\frac{157}{8}$$
 m² = 19.625 m²

(ii) When length of the rope is increased to 10 m

$$\therefore$$
 $r = 10 \text{ m}$

Area of the new circular portion grazed

$$= \frac{\theta}{360^{\circ}} \times \pi r^2 = \frac{90^{\circ}}{360^{\circ}} \times \frac{314}{100} \times (10)^2 \text{ m}^2$$

$$=\frac{1}{4}\times314 \text{ m}^2=78.5 \text{ m}^2$$

:. Increase in the grazing area

$$= (78.5 - 19.625) \text{ m}^2 = 58.875 \text{ m}^2.$$

Diameter of the circle = 35 mm

$$\therefore \text{ Radius } (r) = \frac{35}{2} \text{mm}$$

Circumference of circle = $2\pi r$

$$=2\times\frac{22}{7}\times\frac{35}{2}$$
 mm $=22\times5=110$ mm

Length of 1 piece of wire used to make diameter to divide the circle into 10 equal sectors = 35 mm

Length of 5 pieces = $5 \times 35 = 175$ mm

Total length of the silver wire

= (110 + 175) mm = 285 mm

(ii) Since the circle is divided into 10 equal sectors.

$$\therefore$$
 Sector angle, $\theta = \frac{360^{\circ}}{10} = 36^{\circ}$

Now, area of each sec

$$= \frac{\theta}{360^{\circ}} \times \pi r^2 = \frac{36^{\circ}}{360^{\circ}} \times \frac{22}{7} \times \frac{35}{2} \times \frac{35}{2} \text{ mm}^2$$

$$=\frac{11\times35}{4}$$
mm² $=\frac{385}{4}$ mm².

10. Here, radius (r) = 45 cm

Since circle is divided into 8 equal parts.

 \therefore Sector angle corresponding to each part, $\theta = \frac{360^{\circ}}{9} = 45^{\circ}$

:. Area of a sector (part)

$$= \frac{\theta}{360^{\circ}} \times \pi r^2 = \frac{45^{\circ}}{360^{\circ}} \times \frac{22}{7} \times 45 \times 45 \text{ cm}^2$$

$$= \frac{11 \times 45 \times 45}{4 \times 7} \text{ cm}^2 = \frac{22275}{28} \text{ cm}^2$$

:. The required area between the two consecutive ribs

$$=\frac{22275}{28}$$
cm²

11. Here, radius (r) = 25 cm

Sector angle (θ) = 115°

.: Total area cleaned by each sweep of the blades

$$= \left[\frac{\theta}{360^{\circ}} \times \pi r^2 \right] \times 2$$

[: There are 2 blades]

$$= \left[\frac{115^{\circ}}{360^{\circ}} \times \frac{22}{7} \times 25 \times 25\right] \times 2 \text{ cm}^2$$

$$= \frac{23 \times 11 \times 25 \times 25}{18 \times 7} \text{ cm}^2 = \frac{158125}{126} \text{ cm}^2$$

12. Here, radius (r) = 16.5 km

Sector angle (θ) = 80°

:. Area of the sea surface over which the ships are

warned =
$$\frac{\theta}{360^{\circ}} \times \pi r^2 = \frac{80^{\circ}}{360^{\circ}} \times \frac{314}{100} \times \frac{165}{10} \times \frac{165}{10} \text{ km}^2$$

$$= \frac{157 \times 11 \times 11}{100} \, \text{km}^2 = \frac{18997}{100} \, \text{km}^2 = 189.97 \, \text{km}^2$$

13. Here, r = 28 cm

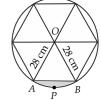
Since, the circle is divided into six equal sectors.

$$\therefore$$
 Sector angle, $\theta = \frac{360^{\circ}}{6} = 60^{\circ}$

:. Area of each sector

$$=\frac{60^{\circ}}{360^{\circ}} \times \frac{22}{7} \times 28 \times 28 \text{ cm}^2$$

$$= \frac{44 \times 28}{3} \text{ cm}^2 = 410.67 \text{ cm}^2 \qquad ...(1)$$



...(2)

Now, area of 1 design = Area of segment APB

= Area of sector APBO – Area of $\triangle AOB$

In $\triangle AOB$, $\angle AOB = 60^{\circ}$, OA = OB = 28 cm

$$\therefore$$
 $\angle OAB = 60^{\circ}$ and $\angle OBA = 60^{\circ}$

 $\triangle AOB$ is an equilateral triangle.

$$\therefore$$
 Area of $\triangle AOB = \frac{\sqrt{3}}{4} \times (\text{side})^2$

$$=\frac{\sqrt{3}}{4} \times 28 \times 28 = 14 \times 14 \sqrt{3} \text{ cm}^2$$

= $14 \times 14 \times 1.7 \text{ cm}^2$ = 333.2 cm^2 ...(3) Now, from (1), (2) and (3), we have

Area of segment $APB = 410.67 \text{ cm}^2 - 333.2 \text{ cm}^2$ = 77.47 cm²

- \Rightarrow Area of 1 design = 77.47 cm²
- \therefore Area of the 6 equal designs = $6 \times (77.47) \text{ cm}^2$ = 464.82 cm^2

So, cost of making the design at the rate of $\stackrel{?}{\stackrel{?}{$\sim}} 0.35 \text{ per cm}^2$ = $\stackrel{?}{\stackrel{?}{\stackrel{?}{$\sim}}} (0.35 \times 464.82) = \stackrel{?}{\stackrel{?}{\stackrel{?}{$\sim}}} 162.68$

14. (d): Here, radius (r) = R

Angle of sector $(\theta) = p$

:. Area of the sector

$$= \frac{\theta}{360^{\circ}} \times \pi r^2 = \frac{p}{360} \times \pi R^2 = \frac{2}{2} \times \left(\frac{p}{360} \times \pi R^2\right) = \frac{p}{720} \times 2\pi R^2$$

EXERCISE - 12.3

- **1.** Since *O* is the centre of the circle.
- \therefore *QOR* is a diameter.
- $\Rightarrow \angle RPQ = 90^{\circ}$ [: Angle in a semi-circle is 90°] Now, in right $\triangle RPQ$,

RQ² = PQ² + PR² [By Pythagoras theorem]

$$\Rightarrow RO^2 = 24^2 + 7^2 = 576 + 49 = 625$$

$$\Rightarrow RQ = \sqrt{625} = 25 \text{ cm}$$

$$\therefore$$
 Radius of circle = $\frac{25}{2}$ cm

 \therefore Area of $\triangle RPQ$

$$= \frac{1}{2} \times PQ \times PR = \frac{1}{2} \times 24 \times 7 \text{ cm}^2 = 12 \times 7 \text{ cm}^2 = 84 \text{ cm}^2$$

Now, area of semi-circle

$$= \frac{1}{2}\pi r^2 = \frac{1}{2} \times \frac{22}{7} \times \frac{25}{2} \times \frac{25}{2} = \frac{11 \times 625}{7 \times 4} \text{ cm}^2$$
$$= \frac{6875}{28} \text{ cm}^2 = 245.54 \text{ cm}^2$$

- \therefore Area of the shaded portion = 245.54 cm² 84 cm² = 161.54 cm²
- 2. Radius of the outer circle, R = 14 cm and $\theta = 40^{\circ}$

$$\therefore \text{ Area of the sector } AOC = \frac{\theta}{360^{\circ}} \times \pi R^2$$
$$= \frac{40^{\circ}}{360^{\circ}} \times \frac{22}{7} \times 14 \times 14 \text{cm}^2$$

$$=\frac{1}{9}\times22\times2\times14$$
cm² $=\frac{616}{9}$ cm²

Radius of the inner circle, r = 7 cm and $\theta = 40^{\circ}$

$$\therefore \text{ Area of the sector } BOD = \frac{\theta}{360^{\circ}} \times \pi r^2$$
$$= \left(\frac{40^{\circ}}{360^{\circ}} \times \frac{22}{7} \times 7 \times 7\right) \text{cm}^2 = \left(\frac{1}{9} \times 22 \times 7\right) \text{cm}^2 = \frac{154}{9} \text{cm}^2$$

Now, area of the shaded region = Area of sector *AOC*- Area of sector *BOD*

$$= \left(\frac{616}{9} - \frac{154}{9}\right) \text{cm}^2 = \frac{1}{9}(616 - 154) \text{cm}^2$$
$$= \frac{1}{9} \times 462 \text{ cm}^2 = \frac{154}{3} \text{ cm}^2$$

- 3. Side of the square = 14 cm
- :. Area of the square $ABCD = 14 \times 14 \text{ cm}^2 = 196 \text{ cm}^2$ Now, diameter of the semi-circle = Side of the square
- \Rightarrow Radius of each of the semi-circles $=\frac{14}{2} = 7$ cm
- \therefore Area of the semi-circle *APD*

$$=\frac{1}{2}\pi r^2 = \frac{1}{2} \times \frac{22}{7} \times 7 \times 7 = 77 \text{ cm}^2$$

Area of the semi-circle $BPC = \frac{1}{2} \times \frac{22}{7} \times 7 \times 7 = 77 \text{ cm}^2$

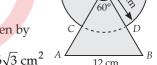
- : Area of the shaded region
- = Area of the square [Area of semi-circle APD

$$= 196 - [77 + 77] = (196 - 154) \text{ cm}^2 = 42 \text{ cm}^2$$

4. Area of the circle with radius $6 \text{ cm} = \pi r^2$

$$=\frac{22}{7}\times6\times6 \text{ cm}^2=\frac{792}{7}\text{ cm}^2$$

Area of equilateral triangle, having side, *a* = 12 cm, is given by



$$\frac{\sqrt{3}}{4}a^2 = \frac{\sqrt{3}}{4} \times 12 \times 12 \text{cm}^2 = 36\sqrt{3} \text{ cm}^2$$
 A

- Each angle of an equilateral triangle = 60°
- ∴ ∠AOB = 60°

$$\therefore \text{ Area of sector } COD = \frac{\theta}{360^{\circ}} \times \pi r^2$$
$$= \frac{60^{\circ}}{360^{\circ}} \times \frac{22}{7} \times 6 \times 6 \text{ cm}^2 = \frac{22 \times 6}{7} \text{ cm}^2 = \frac{132}{7} \text{ cm}^2$$

Now, area of the shaded region = [Area of the circle]

+ [Area of the equilateral triangle] -

[Area of the sector *COD*]

$$= \left[\frac{792}{7} + 36\sqrt{3} - \frac{132}{7}\right] \text{cm}^2 = \left[\frac{660}{7} + 36\sqrt{3}\right] \text{cm}^2.$$

- 5. Side of the square = 4 cm
- \therefore Area of the square ABCD = $4 \times 4 \text{ cm}^2 = 16 \text{ cm}^2$
- : Each corner has a quadrant of circle of radius 1 cm.
- $\therefore \text{ Area of all the 4 quadrants of circle} = 4 \times \frac{1}{4} \pi r^2 = \pi r^2$ $= \frac{22}{7} \times 1 \times 1 \text{cm}^2 = \frac{22}{7} \text{cm}^2$

Diameter of the middle circle = 2 cm

- \Rightarrow Radius of the middle circle = 1 cm
- $\therefore \text{ Area of the middle circle} = \pi r^2$ $= \frac{22}{7} \times 1 \times 1 \text{cm}^2 = \frac{22}{7} \text{cm}^2$

Now, area of the shaded region = [Area of the square *ABCD*] – [(Area of the 4 quadrants of circle)

+ (Area of the middle circle)]

$$= [16] - \left[\frac{22}{7} + \frac{22}{7}\right] = 16 - 2 \times \frac{22}{7}$$

$$=16-\frac{44}{7}=\frac{112-44}{7}=\frac{68}{7}$$
cm²

6. Area of the circle = πr^2

$$= \frac{22}{7} \times 32 \times 32 \text{ cm}^2 = \frac{22528}{7} \text{ cm}^2$$

Let *O* is the centre of the circle.

$$\therefore$$
 $AO = OB = OC = 32 \text{ cm}$

$$\Rightarrow$$
 $\angle AOB = \angle BOC = \angle AOC = 120^{\circ}$

Now, in
$$\triangle AOB$$
, $\angle 1 + \angle 2 = 180^{\circ} - 120^{\circ} = 60^{\circ}$

and
$$OA = OB \implies \angle 1 = \angle 2$$

Draw, $OM \perp AB$, then

$$\frac{OM}{OA} = \sin 30^{\circ} = \frac{1}{2} \Rightarrow OM = OA \times \frac{1}{2}$$

$$\Rightarrow OM = 32 \times \frac{1}{2} = 16 \text{ cm}$$

Also,
$$\frac{AM}{AO} = \cos 30^{\circ} = \frac{\sqrt{3}}{2} \implies AM = \frac{\sqrt{3}}{2} \times AO = \frac{\sqrt{3}}{2} \times 32$$

$$\Rightarrow 2AM = AB = 2 \times \left(\frac{\sqrt{3}}{2} \times 32\right) = 32\sqrt{3} \text{ cm}$$

Area of equilateral
$$\triangle ABC = \frac{\sqrt{3}}{4} (AB)^2$$

= $\frac{\sqrt{3}}{4} (32\sqrt{3})^2 = 768\sqrt{3} \text{ cm}^2$

Now, area of the design = [Area of the circle]

- [Area of the equilateral $\triangle ABC$]

$$=\left(\frac{22528}{7}-768\sqrt{3}\right)$$
cm²

- 7. Side of the square ABCD = 14 cm
- \therefore Area of the square ABCD = $14 \times 14 \text{ cm}^2 = 196 \text{ cm}^2$.
- : Circles touch each other externally
- \therefore Radius of the circle = $\frac{14}{2}$ = 7cm

Now, area of a sector of radius 7 cm and sector angle

(
$$\theta$$
) 90° = $\frac{90^{\circ}}{360^{\circ}} \times \frac{22}{7} \times 7 \times 7 \text{ cm}^2 = \frac{11 \times 7}{2} \text{ cm}^2$

$$\therefore \text{ Area of 4 sectors} = 4 \times \left[\frac{11 \times 7}{2} \right]$$

$$= 2 \times 11 \times 7 \text{cm}^2 = 154 \text{ cm}^2$$

Area of the shaded region = [Area of the square ABCD] - [Area of the 4 sectors] = $196 \text{ cm}^2 - 154 \text{ cm}^2 = 42 \text{ cm}^2$.

8. (i)



Distance around the track along its inner edge

$$= BC + EH + \widehat{BPE} + \widehat{CQH}$$

$$= 106 + 106 + \frac{1}{2}(2\pi r) + \frac{1}{2}(2\pi r)$$

$$=212+\frac{1}{2}\left(2\times\frac{22}{7}\times30\right)+\frac{1}{2}\left(2\times\frac{22}{7}\times30\right)$$

$$\left[\because r = \frac{1}{2}BE = \frac{1}{2} \times 60 = 30 \text{ m} \right]$$

$$= \left(212 + \frac{1320}{7}\right)m = \frac{2804}{7}m$$

(ii) Now, area of the track = Area of the shaded region = (Area of rectangle *ABCD*) + (Area of rectangle *EFGH*) + 2 [(Area of semi-circle of radius 40 m) –

(Area of semi-circle of radius 30 cm)]

 \Rightarrow Area of the track = $(106 \times 10 \text{ m}^2) + (106 \times 10 \text{ m}^2)$

$$+2\left[\frac{1}{2}\times\frac{22}{7}\times(40)^2-\frac{1}{2}\times\frac{22}{7}\times(30)^2\right]m^2$$

=
$$1060 \text{ m}^2 + 1060 \text{ m}^2 + 2 \left[\frac{1}{2} \times \frac{22}{7} \times (40^2 - 30^2) \right] \text{m}^2$$

=
$$2120 \,\mathrm{m}^2 + 2 \times \frac{1}{2} \times \frac{22}{7} \left[(40 + 30) \times (40 - 30) \right] \,\mathrm{m}^2$$

$$=2120 \,\mathrm{m}^2 + \frac{22}{7} \times 70 \times 10 \,\mathrm{m}^2$$

$$= 2120 \text{ m}^2 + 2200 \text{ m}^2 = 4320 \text{ m}^2$$

9. Given, O is the centre of the circle, OA = 7 cm $\Rightarrow AB = 2OA = 2 \times 7 = 14$ cm

Now,
$$OC = OA = 7$$
 cm

 \therefore AB and CD are perpendicular to each other $\Rightarrow OC \perp AB$

$$\therefore \text{ Area of } \triangle ABC = \frac{1}{2} \times AB \times OC$$
$$= \frac{1}{2} \times 14 \text{ cm} \times 7 \text{ cm} = 49 \text{ cm}^2$$

Again, OD = OA = 7 cm

Radius of the smaller circle = $\frac{1}{2}(OD) = \frac{1}{2} \times 7 = \frac{7}{2}$ cm

 $\therefore \text{ Area of the smaller circle } = \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} \text{ cm}^2$

$$=\frac{11\times7}{2}=\frac{77}{2}$$
cm²

: Radius of the bigger circle = 7 cm

∴ Area of the semi-circle *OACB*

$$= \frac{1}{2} \left(\frac{22}{7} \times 7 \times 7 \right) \text{cm}^2 = 11 \times 7 \text{ cm}^2 = 77 \text{ cm}^2$$

Now, Area of the shaded region = [Area of the smaller circle] + [Area of the bigger semi-circle *OACB*] -

[Area of $\triangle ABC$]

$$= \frac{77}{2} \text{cm}^2 + 77 \text{cm}^2 - 49 \text{cm}^2 = \left(\frac{77 + 154 - 98}{2}\right) \text{cm}^2$$
$$= \left(\frac{231 - 98}{2}\right) \text{cm}^2 = \frac{133}{2} \text{cm}^2 = 66.5 \text{ cm}^2.$$

10. Given, area of $\triangle ABC = 17320.5 \text{ cm}^2$

$$\therefore \frac{\sqrt{3}}{4} \times (\text{side})^2 = 17320.5 \implies \frac{1.73205}{4} (\text{side})^2 = 17320.5$$

$$\Rightarrow \frac{173205}{400000} (\text{side})^2 = \frac{173205}{10} \Rightarrow (\text{side})^2 = \frac{173205}{10} \times \frac{400000}{173205}$$

$$\Rightarrow$$
 (side)² = 40000 \Rightarrow (side)² = (200)² \Rightarrow side = 200 cm

 \therefore Radius of each circle, $r = \frac{200}{2} = 100 \text{ cm}$

Since each angle of an equilateral triangle is 60° .

$$\therefore$$
 $\angle A = \angle B = \angle C = 60^{\circ}$

... Area of a sector having angle of sector as 60° and radius 100 cm = $\frac{\theta}{360^{\circ}} \times \pi r^2 = \frac{60^{\circ}}{360^{\circ}} \times \frac{314}{100} \times 100 \times 100 \text{ cm}^2$

$$= \frac{1}{3} \times \frac{157}{100} \times 100 \times 100 \text{ cm}^2 = \frac{15700}{3} \text{ cm}^2$$

Area of 3 equal sectors = $3 \times \frac{15700}{3}$ cm² = 15700 cm²

Now, area of the shaded region

= [Area of the equilateral triangle *ABC*]

- [Area of 3 equal sectors]

$$= 17320.5 \text{ cm}^2 - 15700 \text{ cm}^2 = 1620.5 \text{ cm}^2$$

- **11.** ∴ The circles touch each other externally.
- :. The side of the square *ABCD*
- = $3 \times$ diameter of a circle = $3 \times$ ($2 \times$ radius of a circle)
- $= 3 \times (2 \times 7cm) = 42 cm$
- \therefore Area of the square $ABCD = 42 \times 42 \text{ cm}^2 = 1764 \text{ cm}^2$.

Now, area of one circle =
$$\pi r^2 = \frac{22}{7} \times 7 \times 7 \text{ cm}^2 = 154 \text{ cm}^2$$

- \therefore Total area of 9 circles = 154 × 9 = 1386 cm²
- \therefore Area of the remaining portion of the handkerchief = $(1764 1386) \text{ cm}^2 = 378 \text{ cm}^2$.
- **12.** (i) Here, centre of the circle is O and radius = 3.5 cm.

$$\therefore$$
 Area of the quadrant $OACB = \frac{1}{4}\pi r^2$

$$= \frac{1}{4} \times \frac{22}{7} \times \frac{35}{10} \times \frac{35}{10} \text{ cm}^2 = \frac{11 \times 7}{8} \text{ cm}^2 = \frac{77}{8} \text{ cm}^2$$

(ii) Area of
$$\triangle BOD = \frac{1}{2} \times OB \times OD = \frac{1}{2} \times 3.5 \times 2$$

= $\frac{1}{2} \times \frac{35}{10} \times 2 \text{cm}^2 = \frac{7}{2} \text{cm}^2$

∴ Area of the shaded region = (Area of the quadrant OACB) – (Area of ΔBOD)

$$= \left(\frac{77}{8} - \frac{7}{2}\right) \text{cm}^2 = \frac{77 - 28}{8} \text{cm}^2 = \frac{49}{8} \text{cm}^2.$$

13. OABC is a square such that its side OA = 20 cm

$$\therefore OB^2 = OA^2 + AB^2$$
$$\Rightarrow OB^2 = 20^2 + 20^2$$

$$= 20^{\circ} + 20^{\circ}$$

 $= 400 + 400 = 800^{\circ}$

 $OB = \sqrt{800} = 20\sqrt{2} \text{ cm}$

 \Rightarrow Radius of the circle = $20\sqrt{2}$ cm

\Rightarrow Radius of the circle = $20\sqrt{2}$ cm

Now, area of the quadrant $OPBQ = \frac{1}{4}\pi r^2$

$$=\frac{1}{4} \times \frac{314}{100} \times 800 \text{ cm}^2 = 314 \times 2 = 628 \text{ cm}^2$$

Area of the square $OABC = 20 \times 20 \text{ cm}^2 = 400 \text{ cm}^2$ \therefore Area of the shaded region = $628 \text{ cm}^2 - 400 \text{ cm}^2 = 228 \text{ cm}^2$. **14.** : Radius of bigger circle, R = 21 cm and sector angle $\theta = 30^{\circ}$

$$\therefore \text{ Area of the sector } OAB = \frac{\theta}{360^{\circ}} \times \pi R^2$$

$$=\frac{30^{\circ}}{360^{\circ}} \times \frac{22}{7} \times 21 \times 21 \text{cm}^2 = \frac{11 \times 21}{2} \text{cm}^2 = \frac{231}{2} \text{cm}^2$$

Again, radius of the smaller circle, r = 7 cm Also, the sector angle is 30°

$$\therefore \text{ Area of the sector } OCD = \frac{\theta}{360^{\circ}} \times \pi r^2$$

$$= \frac{30^{\circ}}{360^{\circ}} \times \frac{22}{7} \times 7 \times 7 \text{ cm}^2 = \frac{77}{6} \text{ cm}^2$$

:. Area of the shaded region

$$= \left[\frac{231}{2} - \frac{77}{6} \right] \text{cm}^2 = \frac{693 - 77}{6} \text{cm}^2 = \frac{616}{6} \text{cm}^2 = \frac{308}{3} \text{cm}^2.$$

15. Radius of the quadrant, r = 14 cm Therefore, area of the quadrant *ABPC*

$$= \frac{1}{4}\pi r^2 = \left[\frac{1}{4} \times \frac{22}{7} \times 14 \times 14\right] \text{cm}^2 = 22 \times 7 \text{ cm}^2 = 154 \text{ cm}^2$$

Area of right $\triangle ABC = \frac{1}{2} \times 14 \times 14 \text{ cm}^2 = 98 \text{ cm}^2$

Area of segment $BPC = (154 - 98) \text{ cm}^2 = 56 \text{ cm}^2$ Now, in right $\triangle ABC$, $AC^2 + AB^2 = BC^2$

$$\Rightarrow 14^2 + 14^2 = BC^2 \Rightarrow 196 + 196 = BC^2$$

$$\Rightarrow BC^2 = 392 \Rightarrow BC = 14\sqrt{2}$$
 cm.

 $\therefore \text{ Radius of the semi-circle } BQC = \frac{14\sqrt{2}}{2} \text{ cm} = 7\sqrt{2} \text{ cm}$

: Area of the semi-circle *BQC*

$$= \frac{1}{2}\pi r^2 = \frac{1}{2} \times \frac{22}{7} \times (7\sqrt{2})^2 = 11 \times 7 \times 2 \text{ cm}^2 = 154 \text{ cm}^2$$

Now, area of the shaded region

- = [Area of semi-circle BQC] [Area of segment BPC] = 154 cm^2 – 56 cm^2 = 98 cm^2 .
- **16.** \therefore Side of the square = 8 cm
- \therefore Area of the square (ABCD) = $8 \times 8 \text{ cm}^2 = 64 \text{ cm}^2$ Now, radius of the quadrant ADQB = 8 cm

$$\therefore$$
 Area of the quadrant $ADQB = \frac{1}{4} \times \frac{22}{7} \times 8 \times 8 \text{ cm}^2$

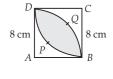
$$=\frac{1}{4}\times\frac{22}{7}\times64$$
 cm² $=\frac{22\times16}{7}$ cm²

Similarly, area of the quadrant

$$BPDC = \frac{22 \times 16}{7} \text{ cm}^2$$

Sum of the two quadrant

$$=2\left[\frac{22\times16}{7}\right]$$
cm² $=\frac{704}{7}$ cm²



Now, area of design = [Sum of the area of the two quadrant] - [Area of the square *ABCD*]

$$= \frac{704}{7} \text{cm}^2 - 64 \text{cm}^2 = \frac{704 - 448}{7} \text{cm}^2 = \frac{256}{7} \text{cm}^2.$$

MtG BEST SELLING BOOKS FOR CLASS 10

