Constructions

TRY YOURSELF

SOLUTIONS

1. Steps of Construction

Step 1 : Draw a line segment *AB* = 12 cm.

Step 2: Draw a ray *AX* making an acute angle with the line segment *AB*.

Step 3 : Locate (1 + 5 =) 6 points $A_1, A_2, ..., A_6$ on AX such that $AA_1 = A_1A_2 = = A_5A_6$.

Step 5 : Through A_1 , draw A_1C parallel to A_6B , meeting AB at C, such that $\angle AA_6B = \angle AA_1C$.

Hence, AC : CB = 1 : 5.

Justification : In $\triangle ABA_6$, we observe that A_1C is parallel to A_6B , therefore by basic proportionality theorem, we have

$$\frac{AA_1}{A_1A_6} = \frac{AC}{BC} \text{ i.e., } \frac{AC}{BC} = \frac{1}{5}$$
[By construction, we get $\frac{AA_1}{A_1A_6} = \frac{1}{5}$]

 $\Rightarrow AC: CB = 1:5.$

2. Steps of Construction

Step 1 : Draw a line segment AB = 5 cm.

Step 2: Draw a ray *AX* making an acute angle with *AB*. **Step 3**: Draw a ray *BY* parallel to *AX* such that $\angle ABY = \angle BAX$.

Step 4 : Locate points $A_1, A_2, A_3, A_4, \dots, A_7$ on AX and B_1, B_2, B_3 on BY such that $AA_1 = A_1A_2 = A_2A_3 = \dots = A_6A_7 = BB_1 = B_1B_2 = B_2B_3$.

Step 5: Join A_7B_3 that intersects *AB* at *C*. Then, *AC* : *CB* = 7 : 3.

On measuring two parts, we get AC = 3.5 cm and CB = 1.5 cm.

Justification : In $\triangle ACA_7$ and $\triangle BCB_3$, we have

 $\angle A_7 A C = \angle CBB_3 \qquad [\because \angle XAB = \angle ABY]$ $\angle ACA_7 = \angle BCB_3 \qquad [Vertically opposite angles]$ $\therefore \quad \Delta ACA_7 \sim \Delta BCB_3$ $\implies \quad \frac{AC}{AC} = \frac{AA_7}{AC}$

$$\Rightarrow \quad \frac{BC}{BC} = \frac{BB_3}{3} \qquad \qquad \left[\because \frac{AA_7}{BB_3} = \frac{7}{3} \right]$$

3. Steps of Construction

Step 1: Draw a line segment AB = 4.9 cm. **Step 2**: Draw a ray AX making an acute angle with AB. **Step 3**: Locate (3 + 4 =) 7 points A_1 , A_2 , A_3 , A_4 , A_5 , A_6 , A_7 on AX such that $AA_1 = A_1A_2 = = A_6A_7$.

[AA similarity]

Step 4 : Join A_7B .

Step 5 : Through A_3 , draw A_3C parallel to A_7B , meeting *AB* at *C*, such that $\angle AA_7B = \angle AA_3C$.

Hence, AC = CB = 3:4.

On measuring two parts, we get AC = 2.1 cm and CB = 2.8 cm.

Justification : In $\triangle ABA_7$, we observe that A_3C is parallel to A_7B , therefore, by basic proportionality theorem, we have

$$\frac{AA_3}{A_3A_7} = \frac{AC}{BC} \text{ i.e., } \frac{AC}{CB} = \frac{3}{4}$$

$$\begin{bmatrix} By \text{ construction, we get } \frac{AA_3}{A_3A_7} = \frac{3}{4} \end{bmatrix}$$

$$\Rightarrow AC: CB = 3:4$$

4. Steps of Construction

Step 1 : Construct a $\triangle ABC$ in which BC = 6 cm, AB = 5 cm and $\angle ABC = 70^{\circ}$.

Step 2 : Below *BC*, draw a ray *BX* such that $\angle CBX$ is an acute angle.

Step 3 : Along *BX*, mark off seven points B_1 , B_2 , B_3 , B_4 , B_5 , B_6 and B_7 such that $BB_1 = B_1B_2 = B_2B_3 = B_3B_4 = B_4B_5 = B_5B_6 = B_6B_7$.

Step 4 : Join B_7C .

Step 5 : From B_5 , draw $B_5D \parallel B_7C$, meeting *BC* at *D*.

Step 6 : From *D*, draw *ED* || *AC*, meeting *BA* at *E*.

Thus, $\triangle EBD$ is the required triangle.

Justification : Since *ED* || *AC*

 $\therefore \Delta EBD \sim \Delta ABC$

MtG 100 PERCENT Mathematics Class-10

 $\Rightarrow \frac{EB}{AB} = \frac{BD}{BC} = \frac{ED}{AC} \quad ...(i)$ Now, in $\triangle BDB_5$ and $\triangle BCB_7$

Since, $B_5D \parallel B_7C$

$$\therefore \quad \Delta BDB_5 \sim \Delta BCB_7$$

$$\Rightarrow \quad \frac{BD}{BC} = \frac{B_5D}{B_7C} = \frac{BB_5}{BB_7} = \frac{5}{7} \quad \dots$$

From (i) and (ii), we get

$$\frac{EB}{AB} = \frac{BD}{BC} = \frac{ED}{AC} = \frac{5}{7}$$

5. Steps of Construction

Step 1 : Construct $\triangle ABC$ in which BC = 6 cm, $\angle C = 90^{\circ}$ and AC = 8 cm.

Step 2 : Below *BC*, draw any ray *BX* making an acute angle with it.

Step 3 : Locate 4 points B_1 , B_2 , B_3 and B_4 on BX such that $BB_1 = B_1B_2 = B_2B_3 = B_3B_4$ and join B_4C .

Step 4 : Draw a line through B_1 parallel to B_4C intersecting *BC* at *C*'.

Step 5: Draw a line through

C' parallel to the line *CA* intersecting *BA* at *A'*. Hence, $\Delta A'BC'$ is the required similar triangle whose

sides are $\frac{1}{4}$ times the corresponding sides of $\triangle ABC$.

6. Steps of Construction

Step 1 : Construct an equilateral triangle *PQR* with sides 4.2 cm.

Step 2: Draw a ray QX such that $\angle RQX$ is an acute angle. **Step 3**: Along QX, mark off seven points X_1 , X_2 , X_2 , X_3 , X_4 , X_4 , X_4 , X_4 , X_5 , X_4

 $X_3, X_4, X_5, X_6 \text{ and } X_7 \text{ such}$ that $QX_1 = X_1X_2 = X_2X_3$ $= X_3X_4 = X_4X_5 = X_5X_6 = X_6X_7.$

Step 4 : Join RX_7 . **Step 5 :** From X_6 , draw $X_6C \parallel X_7R$, meeting QR at C.

Step 6: From C, draw AC

1 X_2 X_3 X_4 X_5 X_6 X_7 X

|| *PR*, meeting *PQ* at *A*. Thus, ΔAQC is the required similar triangle.

7. Steps of Construction

Step 1 : Construct a $\triangle ABC$ such that AB = 6 cm, BC = 8 cm and AC = 7 cm.

Step 2: Draw a ray *BX* such that $\angle CBX$ is an acute angle. **Step 3**: Mark 7 points X_1 , X_2 , X_3 , X_4 , X_5 , X_6 and X_7 on *BX* such that $BX_1 = X_1X_2 = X_2X_3 = X_3X_4 = X_4X_5 = X_5X_6$ = X_6X_7 .

Step 4 : Join X_5 to *C*.

Step 5 : Draw a line through X_7 intersecting *BC* produced at *C* such that $X_5C \parallel X_7C'$.

Step 6: Draw a line through C', parallel to CA to intersect *BA* produced at *A'*. Thus, $\Delta A'BC'$ is the required similar triangle.

Step 2 : Draw a ray *BX* such that $\angle CBX$ is an acute angle.

Step 3 : Mark 5 points X_1, X_2, X_3, X_4, X_5 on *BX* such that $BX_1 = X_1X_2 = X_2X_3 = X_3X_4 = X_4X_5$. **Step 4 :** Join X_4 to *C*.

Step 5 : Draw a line through

 X_5 intersecting *BC* produced at C' such that $X_4C \parallel X_5C'$. **Step 6**: Draw a line through C' parallel to *AC* intersecting, *BA* produced at *A*'.

Thus, $\Delta A'BC'$ is the required triangle.

9. Steps of Construction

Step 1 : Draw a circle of radius 5.2 cm and take a point *T* on the circle.

Step 2 : Draw a chord *TR* through the point *T* in the circle. **Step 3 :** Take a point *S* on the major arc and join *ST* and *SR*.

Step 4 : On taking *TR* as base, construct $\angle RTB = \angle RST$. **Step 5** : Produce *BT* to *A*.

Thus, *ATB* is the required tangent at point *T*.

10. Steps of Construction

Step 1 : Draw a circle with *O* as centre and radius 2.2 cm. **Step 2 :** Draw diameter *AOB*. **Step 3 :** Take *OB* as base and construct $\angle OBC = 90^{\circ}$ at *B*. **Step 4 :** Produce *CB* to *D* to get the required tangent *CBD*.

2

11. Steps of Construction

Step 1: Draw a circle with *O* as centre and radius 5 cm.

Step 2 : Mark a point *P* outside the circle such that *OP* = 7 cm. **Step 3 :** Join *OP* and draw its perpendicular bisector, which cuts *OP* at *M*.

Step 4 : Draw a circle with M as centre and radius equal to MP to intersect the given circle at the points T and T'. **Step 5 :** Join PT and PT'.

Hence, *PT* and *PT'* are the required tangents.

12. Steps of Construction

Step 1 : Draw two concentric circles with centre *O* and radii 1.5 cm and 2.5 cm.

Step 2 : Take any point *P* on *P* the outer circle.

Step 3 : Join *PO* and bisect it and mark the mid-point of *PO* as *M*.

Step 4 : Taking *M* as centre and *OM* or *MP* as radius, draw a circle such that this circle intersects the inner circle (of radius 1.5 cm) at *A* and *B*.

Step 5 : Join AP.

Thus, *PA* is the required tangent. By measurement, we have PA = 2 cm

Verification:

Join OA. As PO is diameter,

- $\therefore \ \ \angle PAO = 90^{\circ} \qquad \qquad [Angle in a semi-circle]$
- $\Rightarrow PA \perp OA$
- ::OA is a radius of the inner circle.
- \therefore *PA* has to be a tangent to the inner circle.

In right ΔPAO ,

PO = 2.5 cm, OA = 1.5 cm.

 $\therefore PA = \sqrt{(2.5)^2 - (1.5)^2} = \sqrt{6.25 - 2.25} = \sqrt{4} = 2 \,\mathrm{cm}$

13. Steps of constructions :

Step 1 : Draw a circle of radius 4.5 cm and take a point *P* outside the circle. $D \downarrow \downarrow \checkmark$

Step 2 : Through *P*, draw a secant *PAB* which intersects the circle at *A* and *B* and extend it to *C* in opposite *C* direction of *AB* such that PC = PA.

C

Step 3 : Now, bisect BC and take its mid-point as *O*. Draw a semi-circle with centre *O* and radius *OB* (or *OC*). **Step 4 :** Draw $PD \perp BC$ which intersects the semi-circle at *D*.

Step 5 : With P as centre and radius PD, draw two arcs which intersects the given circle at points M and N.

Step 6 : Join *PM* and *PN*.

Thus, *PM* and *PN* are the required tangents to the given circle.

14. Steps of Construction

Step 1: Draw a circle with centre *O* and radius 3 cm. **Step 2**: Draw any diameter *AOB*.

Step 3 : Take a point *P* on the

circle such that $\angle AOP = 90^{\circ}$.

Step 4 : Draw $PQ \perp OP$ and $BE \perp OB$. Let PQ and BE intersect at R.

Hence, RB and RP are the required tangents inclined at an angle of 90°.

15. Steps of Construction

Step 1: Draw a circle with centre *O* and radius 4.5 cm. **Step 2**: Construct an angle $\angle AOP$ equal to complement of 60° *i.e.*, $\angle AOP = 30^\circ$.

Step 3 : Draw perpendicular to *OP* at *P* which meet *OA* produced at *Q*.

Clearly, *PQ* is the required tangent such that $\angle OQP = 60^{\circ}$.

MtG BEST SELLING BOOKS FOR CLASS 10

10

NCERT

F⁴NGERTIPS

MATHEMATICS

10

Visit www.mtg.in for complete information