Surface Areas and Volumes

12.5 cm

8 cm

21 cm

📣 **TRY** YOURSELF

SOLUTIONS

We have, radius (r) of base of cylindrical part 1. = radius (r) of base of conical part = 14 mHeight (*h*) of cylindrical part = 5 m Height (h_1) of conical part = 15.5 – 5 = 10.5 m Slant height (*l*) of conical part = $\sqrt{r^2 + h_1^2}$ $=\sqrt{(14)^2 + (10.5)^2} = \sqrt{196 + 110.25} = \sqrt{306.25} = 17.5 \text{ m}$ Total area to be painted = curved surface area of cylindrical part + curved surface area of conical part $= 2\pi rh + \pi rl = \pi r[2h + l] = \frac{22}{7} \times 14[2 \times 5 + 17.5]$ $= 44[10 + 17.5] = 44 \times 27.5 = 1210 \text{ m}^2$ Hence, cost of painting the tent = ₹(1210 × 75) = ₹ 90750 Total surface area of cube = $6(side)^2$ $= 6 \times 6 \times 6 = 216 \text{ cm}^2$ Radius of hemisphere, r = 3.5/2 cm

Base area of hemisphere = $\pi r^2 = \frac{22}{7} \times \frac{3.5}{2} \times \frac{3.5}{2}$

$$= 11 \times 0.5 \times \frac{3.5}{2} = 9.625 \,\mathrm{cm}^2$$

Curved surface area of hemisphere = $2\pi r^2$

$$= 2 \times \frac{22}{7} \times \left(\frac{3.5}{2}\right)^2 = 11 \times 0.5 \times 3.5 = 19.25 \,\mathrm{cm}^2$$

Total surface area of block = Total surface area of *.*.. cube - Base area of hemisphere + Curved surface area of hemisphere

 $= 216 - 9.625 + 19.25 = 225.625 \text{ cm}^2$

3. Radius (*r*) of cylinder = Radius (*r*) of hemisphere
$$4^2 - 21$$
 cm

$$=\frac{42}{2}=21$$
 cm

2.

Height of cylinder (h) = 30 - 21 = 9 cmInner surface area of the vessel = Curved surface area of cylinder + curved surface area of hemisphere $=2\pi rh+2\pi r^2=2\pi r(h+r)$

$$= 2 \times \frac{22}{7} \times 21 \times (9 + 21) = 44 \times 3 \times 30 = 3960 \text{ cm}^2$$

Curved surface area of the hemispherical part of radius $r = 2\pi r^2$ sq. units.

Radius of conical part = $\frac{1}{2}r$ and its slant height = lCurved surface area of the conical part

$$=\pi \times \frac{1}{2}r \times l = \frac{\pi}{2}rl$$
 sq. units

Area of the exposed upper base of the hemisphere

$$=\pi\left[r^2 - \left(\frac{1}{2}r\right)^2\right] = \pi\left[r^2 - \frac{1}{4}r^2\right]$$
$$= \frac{3}{4}\pi r^2 \text{ sq. units.}$$

Total surface area of the solid = Curved surface area of hemispherical part + Area of exposed upper base of hemisphere + Curved surface area of conical part.

$$=2\pi r^{2} + \frac{3}{4}\pi r^{2} + \frac{\pi}{2}rl = \frac{8\pi r^{2} + 3\pi r^{2}}{4} + \frac{\pi}{2}rl$$

$$=\frac{11\pi}{4}r^2 + \frac{\pi}{2}rl = \frac{\pi}{4}(11r+2l)r \text{ sq.units}$$

Radius of hemispherical part (*r*)

= Radius of conical part (r) = 3.5 cm

Height of conical part (h) = 12.5 – 3.5 = 9 cm

Volume of ice-cream in the cone = Volume of conical part + Volume of hemispherical part

$$= \frac{1}{3}\pi r^{2}h + \frac{2}{3}\pi r^{3} = \frac{1}{3}\pi r^{2}[h+2r]$$

$$= \frac{1}{3} \times \frac{22}{7} \times (3.5)^{2}[9+2(3.5)]$$

$$= \frac{1}{3} \times \frac{22}{7} \times 12.25 \times 16 = \frac{4312}{21} = 205.33 \text{ cm}^{3}$$

For cylindrical part; 6. Radius (r) = 2.5 cm and height (h) = 21 cm Volume of cylinder = $\pi r^2 h$ $=\frac{22}{7} \times 2.5 \times 2.5 \times 21$

$$= 412.5 \text{ cm}^3$$

For conical part; Radius (r) = 2.5 cmSlant height (l) = 8 cm

:. Height
$$(h_1) = \sqrt{l^2 - r^2} = \sqrt{(8)^2 - (2.5)^2}$$

= √64 - 6.25 = √57.75 = 7.6 cm (Approx.)
∴ Volume of cone =
$$\frac{1}{3}\pi r^2 h_1 = \frac{1}{3} \times \frac{22}{7} \times 2.5 \times 2.5 \times 7.6$$

= 1045/21 = 49.76 cm³

MtG 100 PERCENT Mathematics Class-10

 \therefore Volume of rocket = Volume of cylindrical part + Volume of conical part = 412.5 + 49.76 = 462.26 cm³

7. We have, radius of cylinder (r) = 7/2 cm Height of cylinder (h) = 14 cm Radius of both cones, $(r_1) = 2.1$ cm Height of both cones, $(h_1) = 4$ cm Volume of the remaining solid = Volume of cylinder - 2

× Volume of cone

$$= \pi r^{2}h - 2 \times \frac{1}{3}\pi r_{1}^{2}h_{1}$$
$$= \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} \times 14 - \frac{2}{3} \times \frac{22}{7} \times 2.1 \times$$

$$= 539 - 36.96 = 502.04 \text{ cm}^3$$

8. Radius of cylinder (r) = 5 cm Height of cylinder (h) = 9.8 cm Volume of cylinder when it is full of water = $\pi r^2 h$ = $\pi (5)^2 \times 9.8 = 245\pi$ cm³ Now, radius of cone (r_1) = radius of hemisphere (r_1) = 3.5 cm

Height of cone $(h_1) = 5 \text{ cm}$

Volume of water displaced = Volume of the solid = Volume of cone + volume of hemisphere

$$= \frac{1}{3}\pi r_1^2 h_1 + \frac{2}{3}\pi r_1^3 = \frac{1}{3}\pi r_1^2 [h_1 + 2r_1]$$
$$= \frac{1}{3}\pi (3.5)^2 [5 + 2(3.5)] = \frac{1}{3}\pi (12.25) [12] = 49\pi \text{ cm}^3$$

Volume of water left in the tub = Volume of cylinder when it is full of water – Volume of water displaced

 $= 245\pi - 49\pi = 196\pi = 196 \times \frac{22}{7} = 616 \,\mathrm{cm}^3$

9. Given, diameter of metallic sphere = 4.2 cm

 \therefore Radius of metallic sphere (r) = 2.1 cm

Diameter of cylindrical wire = 0.2 cm

 \therefore Radius of cylindrical wire (r_1) = 0.1 cm

Let the length of wire be *x*.

Now, volume of cylindrical wire = volume of sphere

$$\Rightarrow \pi r_1^2 x = \frac{4}{3} \pi r^3 \Rightarrow \pi (0.1)^2 \times x = \frac{4}{3} \pi (2.1)^3$$
$$\Rightarrow x = \frac{4 \times 2.1 \times 2.1 \times 2.1}{3 \times 0.1 \times 0.1} = 1234.8 \,\mathrm{cm} = 12.348 \,\mathrm{m}.$$

10. Given, internal and external radii of hollow sphere are r = 3 cm and R = 5 cm respectively.

Volume of hollow sphere =
$$\frac{4}{3}\pi(R^3 - r^3)$$

= $\frac{4}{3}\pi(5^3 - 3^3) = \frac{4}{3}\pi(98)$ cm³
Given, height of solid cylinder (*h*) = $\frac{8}{3}$ cm

Let r_1 be the radius of solid cylinder. Volume of solid cylinder = $\pi r_1^2 h = \pi r_1^2 \times 8/3$ Now, volume of hollow sphere = Volume of solid cylinder

$$\Rightarrow \quad \frac{4}{3}\pi(98) = \pi r_1^2 \times \frac{6}{3} \Rightarrow r_1^2 = 49 \Rightarrow r_1 = 7 \text{ cm}$$

 \therefore Diameter of solid cylinder = 2 × 7 = 14 cm

11. Let *x* be the required number of marbles. Diameter of marble = 1.4 cm

 $\therefore \quad \text{Radius of marble } (r) = \frac{1.4}{2} = 0.7 \text{ cm}$ Volume of a marble $= \frac{4}{3}\pi r^3 = \frac{4}{3} \times \pi \times (0.7)^3 \text{ cm}^3$ Diameter of cylindrical beaker = 7 cm

 \therefore Radius of cylindrical beaker $(r_1) = \frac{7}{2}$ cm = 3.5 cm

Water level rise in beaker (h) = 5.6 cm Now, volume increased = Volume of x marbles

$$\Rightarrow \pi r_1^2 h = x \times \frac{4}{3} \times \pi \times (0.7)^3$$

$$\Rightarrow \pi \times (3.5)^2 \times 5.6 = x \times \frac{4}{3} \times \pi \times (0.7)^3$$

$$\Rightarrow x = \frac{(3.5)^2 \times 5.6 \times 3}{4 \times (0.7)^3} = 150$$

So, 150 marbles should be dropped into the beaker so that water level rises by 5.6 cm.

12. Let the number of bottles required be x. Diameter of hemispherical bowl = 36 cm

 \therefore Radius of hemispherical bowl (*r*) = 18 cm

Radius of cylindrical bottles $(r_1) = 3$ cm Height of cylindrical bottles (h) = 6 cm

Now, volume of hemispherical bowl = $x \times$ volume of one cylindrical bottle

 $\Rightarrow \quad \frac{2}{3}\pi r^3 = x \times \pi r_1^2 h \Rightarrow \frac{2}{3} \times (18)^3 = x \times (3)^2 \times 6$ $\Rightarrow \quad x = \frac{2 \times 18 \times 18 \times 18}{3 \times 3 \times 3 \times 6} = 72$

 \therefore 72 bottles are required to empty the bowl.

13. Given, diameter of cylindrical pipe = 4 cm

:. Radius of cylindrical pipe (r) = 2 cmRate of water flow = 20 m/minute = 2000 cm/minute Volume of water flowing through the pipe in 1 minute = $(\pi \times 2 \times 2 \times 2000) = \pi \times 8000 \text{ cm}^3$ Diameter of conical tank = 80 cm

 \therefore Radius of conical tank (r_1) = 40 cm

Depth (height) of conical tank $(h_1) = 72$ cm

Volume of conical tank = $\frac{1}{3}\pi r_1^2 h_1 = \frac{1}{3} \times \pi \times 40 \times 40 \times 72$

 $= (\pi \times 40 \times 40 \times 24) \text{ cm}^3$

Let t (in minutes) be the time taken to fill the tank. So, the water that flows through the pipe in t minutes will be equal to volume of conical tank.

$$\therefore t = \frac{\text{Volume of the conical tank}}{\text{Volume of water that flows through the pipe}}$$
in 1 minute

5 cm 9.8 cm

4

$$= \frac{\pi \times 40 \times 40 \times 24}{\pi \times 8000} = \frac{24}{5}$$
 minutes = 4.8 minutes

14. Given, radii of circular ends of frustum are $r_1 = 14$ cm and $r_2 = 6$ cm

Height of frustum (*h*) = 6 cm Slant height, (*l*) = $\sqrt{(r_1 - r_2)^2 + h^2} = \sqrt{(14 - 6)^2 + 6^2}$ $\sqrt{8^2 + 6^2} = \sqrt{64 + 36} = \sqrt{100} = 10 \text{ cm}$ ∴ Lateral surface area of frustum = $\pi (r_1 + r_2)l$ = $\frac{22}{7}(14 + 6) \times 10 = 628.57 \text{ cm}^2$

Total surface area of frustum = $\pi[r_1^2 + r_2^2 + l(r_1 + r_2)]$

$$= \frac{22}{7} [(14)^2 + (6)^2 + 10(14+6)]$$
$$= \frac{22}{7} [196 + 36 + 10(20)] = \frac{9504}{7} = 1357.71 \,\mathrm{cm}^2$$

15. Given diameters of two circular faces of frustum of cone are 35 cm and 30 cm.

... Radii of two circular faces are

 $r_1 = \frac{35}{2}$ cm and $r_2 = \frac{30}{2} = 15$ cm Height of frustum (*h*) = 14 cm

Volume of oil in the container $=\frac{1}{3}\pi[r_1^2 + r_2^2 + r_1r_2]h$

$$= \frac{1}{3} \times \frac{22}{7} \left[\left(\frac{35}{2} \right)^2 + (15)^2 + \left(\frac{35}{2} \right) (15) \right] 14$$

$$= \frac{22}{3} \left[\frac{1225}{4} + 225 + \frac{525}{2} \right] \times 2$$

$$= \frac{22}{3} \left[\frac{1225 + 900 + 1050}{4} \right] \times 2 = \frac{11}{3} \times 3175 \text{ cm}^3$$

Mass of 1 cm³ of oil = 1.2 g
$$\therefore \left(\frac{11}{3} \times 3175 \right) \text{ cm}^3 \text{ of oil} = \left[1.2 \times \frac{11}{3} \times 3175 \right] \text{g}$$

$$= \left[1.2 \times \frac{11}{3} \times \frac{3175}{1000} \right] \text{kg} = 13.97 \text{ kg}$$

Cost of oil at the rate of ₹40 per kg = ₹(40 × 13.97)

=₹558.80

16. Since, diameter of the upper and lower circular ends of the frustum of cone are 14 m and 26 m.

 \therefore Radius of upper and lower circular ends of the

frustum of cone are $r_1 = 7$ m and $r_2 = 13$ m Height of frustum (h) = 8 mSlant height of frustum $(l) = \sqrt{h^2 + (r_2 - r_1)^2}$ $=\sqrt{8^2 + (13 - 7)^2} = \sqrt{64 + 36} = \sqrt{100} = 10 \,\mathrm{m}$ Curved surface area of frustum = $\pi (r_1 + r_2)l$ $=\frac{22}{7}(7+13)\times 10$ $=\frac{22}{7}\times 20\times 10=\frac{4400}{7}=628.57 \,\mathrm{m}^2$ 12 m Radius of cone $(r_1) = 7 \text{ m}$ Slant height of cone $(l_1) = 12 \text{ m}$ 14¦m 8 m :. Curved surface area of the cone = $\pi r_1 l_1$ 26 m $=\frac{22}{7} \times 7 \times 12 = 264 \text{ m}^2$

Area of canvas required to make the tent = Curved surface area of frustum + Curved surface area of cone = $628.57 + 264 = 892.57 \text{ m}^2$

17. In
$$\triangle ABC$$
 and $\triangle ADE$
 $\angle BAC = \angle DAE$ (Common)
 $\angle ABC = \angle ADE$ (Each 90°)
 $\therefore \quad \triangle ABC \sim \triangle ADE$
(By AA Similarity Criterion)
 $\therefore \quad \frac{AB}{AD} = \frac{BC}{DE}$
 $\Rightarrow \quad \frac{4}{12} = \frac{BC}{6} \Rightarrow BC = \frac{4 \times 6}{12} = 2 \text{ cm}$

Now, lower and upper base radii of frustum are $r_1 = 2$ cm and $r_2 = 6$ cm respectively

Height of frustum (h) = 12 – 4 = 8 cm Slant height of frustum (l)

$$= \sqrt{h^2 + (r_2 - r_1)^2} = \sqrt{8^2 + (6 - 2)^2}$$

= $\sqrt{64 + 16} = \sqrt{80} = 4\sqrt{5} = 4 \times 2.236 = 8.944$ cm
Total surface area of remaining solid (frustum)

$$= \pi [r_2^2 + r_1^2 + l(r_2 + r_1)]$$

= $\frac{22}{7} [(6)^2 + (2)^2 + 8.944(6 + 2)]$
= $\frac{22}{7} [36 + 4 + 71.552] = \frac{22}{7} \times 111.552 = 350.592 \text{ cm}^2$

MtG BEST SELLING BOOKS FOR CLASS 10

10

NCERT

F⁴NGERTIPS

MATHEMATICS

10

Visit www.mtg.in for complete information