CHAPTER

Quadratic Equations

TRY YOURSELF

SOLUTIONS

[$: x \neq 0$]

1. We have, $(x-3)^2 + 2 = 5x - 9$

$$\Rightarrow x^2 + 9 - 6x + 2 = 5x - 9 \Rightarrow x^2 - 11x + 20 = 0$$

It is of the form $ax^2 + bx + c = 0$, $a \ne 0$.

So, the given equation is a quadratic equation.

- We have, $x(7x 12) = 7(x^2 7x + 9)$
- \Rightarrow $7x^2 12x = 7x^2 49x + 63 <math>\Rightarrow 37x 63 = 0$

It is not of the form $ax^2 + bx + c = 0$, $a \ne 0$.

So, the given equation is not a quadratic equation.

- We have, $x(6x + 5) = 8x^2 + 6x$
- \Rightarrow $6x^2 + 5x = 8x^2 + 6x \Rightarrow 2x^2 + x = 0$

It is of the form $ax^2 + bx + c = 0$, $a \ne 0$.

So, the given equation is a quadratic equation.

- We have, $2x \frac{3}{x} 15 = 5\left(2x \frac{3}{x}\right), x \neq 0$
- \Rightarrow $2x \frac{3}{x} 15 = 10x \frac{15}{x}$
- \Rightarrow 2x² 3 15x = 10x² 15
- $\Rightarrow 8x^2 + 15x 12 = 0$

It is of the form $ax^2 + bx + c = 0$, $a \ne 0$.

So, the given equation is a quadratic equation.

Let two consecutive odd integers be 2x + 1 and

According to question, (2x + 1)(2x + 3) = 783

- \Rightarrow 4x² + 6x + 2x + 3 = 783
- $\Rightarrow 4x^2 + 8x 780 = 0 \Rightarrow x^2 + 2x 195 = 0$

This is the required quadratic equation.

- Let the present age of Raju be *x* years.
- His father's present age = (x + 30) years

After 5 years, Raju's age = (x + 5) years

After 5 years, father's age = (x + 30 + 5) = (x + 35) years

According to question, (x + 5)(x + 35) = 450

$$\Rightarrow$$
 $x^2 + 35x + 5x + 175 = 450 $\Rightarrow x^2 + 40x - 275 = 0$$

This is the required quadratic equation.

Given equation is in the form p(x) = 0,

where
$$p(x) = 5x^2 - 126x + 25$$
 ...(i)

On putting x = 25 in (i), we get

$$p(25) = 5(25)^2 - 126(25) + 25 = 3125 - 3150 + 25 = 0$$

On putting $x = \frac{1}{10}$ in (i), we get

$$p\left(\frac{1}{10}\right) = 5\left(\frac{1}{10}\right)^2 - 126\left(\frac{1}{10}\right) + 25$$

$$=\frac{5-1260+2500}{100}=\frac{1245}{100}\neq 0.$$

Hence, x = 25 is a solution but $x = \frac{1}{10}$ is not a solution of the given quadratic equation.

Given equation is in the form p(x) = 0,

where
$$p(x) = x^2 + 8x + 4$$
 ...(i)

On putting x = -2 in (i), we get

$$p(-2) = (-2)^2 + 8(-2) + 4 = 4 - 16 + 4 = -8 \neq 0$$

On putting x = -4 in (i), we get

$$p(-4) = (-4)^2 + 8(-4) + 4 = 16 - 32 + 4 = -12 \neq 0$$

So, x = -2 and -4 both are not the solutions of the given equation.

9. Given equation is in the form p(x) = 0,

where
$$p(x) = x^2 - 4\sqrt{2}x + 2\sqrt{2}$$
 ...(i)

On putting $x = \sqrt{2}$ in (i), we get

$$p(\sqrt{2}) = (\sqrt{2})^2 - 4\sqrt{2}(\sqrt{2}) + 2\sqrt{2}$$

$$= 2 - 8 + 2\sqrt{2} = 2\sqrt{2} - 6 \neq 0$$

On putting $x = \sqrt{2} + 1$ in (i), we get

$$p(\sqrt{2}+1) = (\sqrt{2}+1)^2 - 4\sqrt{2}(\sqrt{2}+1) + 2\sqrt{2}$$
$$= 2+1 + 2\sqrt{2} - 8 - 4\sqrt{2} + 2\sqrt{2} = -5 \neq 0$$

So, $x = \sqrt{2}$ and $\sqrt{2} + 1$ both are not the solutions of the given equation.

10. Given, $x^2 + kx - 192 = 0$

Since, x = 12 is a root of the given equation, so it will satisfy the given equation.

$$\therefore (12)^2 + k(12) - 192 = 0 \Rightarrow 144 + 12k - 192 = 0$$

$$\Rightarrow$$
 12k - 48 = 0 \Rightarrow k = $\frac{48}{12}$ = 4

11. Given, $5x^2 - 8x + k = 0$

Since, x = -2/5 is a root of the given equation, so it will satisfy the given equation.

$$\therefore 5\left(\frac{-2}{5}\right)^2 - 8\left(\frac{-2}{5}\right) + k = 0$$

$$\Rightarrow \quad \frac{4}{5} + \frac{16}{5} + k = 0 \Rightarrow 4 + k = 0 \Rightarrow k = -4$$

12. Given,
$$3x^2 - 2ax + 2b = 0$$
 ...(i)

Since, x = 2 and x = 3 are the roots of (i), so these will satisfy the given equation.

On putting x = 2 in (i), we get

$$3(2)^2 - 2a(2) + 2b = 0$$

$$\Rightarrow$$
 12 - 4a + 2b = 0 \Rightarrow 4a - 2b = 12 ...(ii)

On putting x = 3 in (i), we get

$$3(3)^2 - 2a(3) + 2b = 0$$

$$\Rightarrow$$
 27 - 6a + 2b = 0 \Rightarrow 6a - 2b = 27 ...(iii)

Subtracting (ii) from (iii), we get

$$2a = 15 \Rightarrow a = \frac{15}{2}$$

Substituting the value of *a* in (ii), we get

$$4\left(\frac{15}{2}\right) - 2b = 12 \Rightarrow 30 - 2b = 12 \Rightarrow 2b = 18 \Rightarrow b = 9$$

13. We have,
$$11x^2 - 26x - 21 = 0$$

$$\Rightarrow$$
 11x² - 33x + 7x - 21 = 0 \Rightarrow 11x(x - 3) + 7(x - 3) = 0

$$\Rightarrow$$
 $(x-3)(11x+7) = 0 \Rightarrow x-3 = 0 \text{ or } 11x+7 = 0$

$$\Rightarrow$$
 $x = 3 \text{ or } x = \frac{-7}{11}$

Hence, 3 and $\frac{-7}{11}$ are the two roots of the given equation.

14. We have,
$$2x^2 - 17x + 21 = 0$$

$$\Rightarrow 2x^2 - 14x - 3x + 21 = 0 \Rightarrow 2x(x - 7) - 3(x - 7) = 0$$

$$\Rightarrow$$
 $(x-7)(2x-3) = 0 \Rightarrow x-7 = 0 \text{ or } 2x-3 = 0$

$$\Rightarrow x = 7 \text{ or } x = \frac{3}{2}$$

Hence, 7 and $\frac{3}{2}$ are the two roots of the given equation.

15. We have,
$$2ax^2 - (2a - b^2)x - b^2 = 0$$

$$\Rightarrow 2ax^2 - 2ax + b^2x - b^2 = 0 \Rightarrow 2ax(x-1) + b^2(x-1) = 0$$

$$\Rightarrow$$
 $(x-1)(2ax + b^2) = 0 \Rightarrow x-1 = 0 \text{ or } 2ax + b^2 = 0$

$$\Rightarrow x = 1 \text{ or } x = -\frac{b^2}{2a}$$

Hence, 1 and $-\frac{b^2}{2a}$ are the two roots of the given equation.

16. We have,
$$x^2 + (1 + \sqrt{5})x + \sqrt{5} = 0$$

$$\Rightarrow$$
 $x^2 + x + \sqrt{5}x + \sqrt{5} = 0$

$$\Rightarrow x(x+1) + \sqrt{5}(x+1) = 0 \Rightarrow (x+1)(x+\sqrt{5}) = 0$$

$$\Rightarrow$$
 $x + 1 = 0$ or $x + \sqrt{5} = 0 \Rightarrow x = -1$ or $x = -\sqrt{5}$

Hence, -1 and $-\sqrt{5}$ are the two roots of the given equation.

17. Let original average speed of the train be x km/hr. According to question,

$$\frac{63}{x} + \frac{72}{x+6} = 3 \implies \frac{7}{x} + \frac{8}{x+6} = \frac{1}{3} \implies \frac{7(x+6) + 8x}{x(x+6)} = \frac{1}{3}$$

$$\Rightarrow$$
 3 $(7x + 42 + 8x) = x^2 + 6x \Rightarrow 45x + 126 = $x^2 + 6x$$

$$\Rightarrow x^2 - 39x - 126 = 0 \Rightarrow x^2 - 42x + 3x - 126 = 0$$

$$\Rightarrow$$
 $(x-42)(x+3)=0 \Rightarrow x-42=0 \text{ or } x+3=0$

$$\Rightarrow x = 42 \qquad (\because x > 0 \text{ so } x \neq -3)$$

Hence, the original speed of the train is 42 km/hr.

18. Let the marked price of the book be $\not\in x$.

Total cost = ₹ 300

$$\therefore$$
 Number of books = $\frac{300}{r}$

If price of the book is ₹ (x - 5), then

Number of books =
$$\frac{300}{x-5}$$

According to question,

$$\frac{300}{x-5} - \frac{300}{x} = 5 \Rightarrow \frac{300x - 300(x-5)}{(x-5)x} = 5$$

$$\Rightarrow$$
 1500 = 5(x^2 - 5x) \Rightarrow x^2 - 5x - 300 = 0

$$\Rightarrow x^2 - 20x + 15x - 300 = 0 \Rightarrow x(x - 20) + 15(x - 20) = 0$$

$$\Rightarrow$$
 $(x - 20)(x + 15) = 0 \Rightarrow x = 20 \text{ or } x = -15$

Since, x has to be a positive integer, so x = -15 is rejected.

$$x = 20$$

Hence, original marked price of the book is ₹ 20.

19. We have,
$$4x^2 + 4bx - (a^2 - b^2) = 0$$

$$\Rightarrow x^2 + bx - \left(\frac{a^2 - b^2}{4}\right) = 0 \Rightarrow x^2 + bx = \frac{a^2 - b^2}{4}$$

Adding $\left(\frac{b}{2}\right)^2$ on both sides, we get

$$x^{2} + 2\left(\frac{b}{2}\right)x + \left(\frac{b}{2}\right)^{2} = \frac{a^{2} - b^{2}}{4} + \left(\frac{b}{2}\right)^{2}$$

$$\Rightarrow \left(x + \frac{b}{2}\right)^2 = \frac{a^2}{4} \Rightarrow x + \frac{b}{2} = \pm \frac{a}{2}$$

$$\Rightarrow$$
 $x = \frac{-b}{2} \pm \frac{a}{2} \Rightarrow x = \frac{-b-a}{2} \text{ or } x = \frac{-b+a}{2}$

Hence, the roots are $-\left(\frac{a+b}{2}\right)$ and $\left(\frac{a-b}{2}\right)$.

20. We have,
$$x^2 - (\sqrt{3} + 1)x + \sqrt{3} = 0$$

$$\Rightarrow x^2 - (\sqrt{3} + 1)x = -\sqrt{3}$$

Adding
$$\left(\frac{\sqrt{3}+1}{2}\right)^2$$
 on both sides, we get

$$x^{2} - 2\left(\frac{\sqrt{3}+1}{2}\right)x + \left(\frac{\sqrt{3}+1}{2}\right)^{2} = -\sqrt{3} + \left(\frac{\sqrt{3}+1}{2}\right)^{2}$$

$$\Rightarrow \left(x - \frac{\sqrt{3} + 1}{2}\right)^2 = \frac{-4\sqrt{3} + (\sqrt{3} + 1)^2}{4}$$

$$\Rightarrow \left(x - \frac{\sqrt{3} + 1}{2}\right)^2 = \left(\frac{\sqrt{3} - 1}{2}\right)^2$$

Quadratic Equations 3

$$\Rightarrow \quad x - \frac{\sqrt{3} + 1}{2} = \pm \frac{\sqrt{3} - 1}{2} \Rightarrow x = \frac{\sqrt{3} + 1}{2} \pm \frac{\sqrt{3} - 1}{2}$$

$$\Rightarrow x = \sqrt{3} \text{ or } x = 1$$

Hence, the roots are $\sqrt{3}$ and 1.

21. We have, $3x^2 + 11x + 10 = 0$

$$\Rightarrow x^2 + \frac{11}{3}x + \frac{10}{3} = 0 \Rightarrow x^2 + \frac{11}{3}x = \frac{-10}{3}$$

Adding $\left(\frac{11}{6}\right)^2$ on both sides, we get

$$x^{2} + 2\left(\frac{11}{6}\right)x + \left(\frac{11}{6}\right)^{2} = \frac{-10}{3} + \left(\frac{11}{6}\right)^{2}$$

$$\Rightarrow \left(x + \frac{11}{6}\right)^2 = \frac{-10}{3} + \frac{121}{36} \Rightarrow \left(x + \frac{11}{6}\right)^2 = \frac{1}{36}$$

$$\Rightarrow x + \frac{11}{6} = \pm \sqrt{\frac{1}{36}} = \pm \frac{1}{6}$$

$$\Rightarrow$$
 $x = -\frac{11}{6} \pm \frac{1}{6} \Rightarrow x = -\frac{11}{6} + \frac{1}{6} \text{ or } x = -\frac{11}{6} - \frac{1}{6}$

$$\Rightarrow x = \frac{-10}{6} = \frac{-5}{3} \text{ or } x = \frac{-12}{6} = -2$$

Hence, the roots are $\frac{-5}{2}$ and -2.

22. We have, $\sqrt{3} x^2 + 10x + 7\sqrt{3} = 0$

$$\Rightarrow x^2 + \frac{10}{\sqrt{3}}x + 7 = 0 \Rightarrow x^2 + \frac{10}{\sqrt{3}}x = -7$$

Adding $\left(\frac{10}{2\sqrt{3}}\right)^2$ on both sides, we get

$$x^{2} + 2\left(\frac{10}{2\sqrt{3}}\right)x + \left(\frac{10}{2\sqrt{3}}\right)^{2} = -7 + \left(\frac{10}{2\sqrt{3}}\right)^{2}$$

$$\Rightarrow \left(x + \frac{10}{2\sqrt{3}}\right)^2 = -7 + \frac{100}{4 \times 3}$$

$$\Rightarrow \left(x + \frac{10}{2\sqrt{3}}\right)^2 = \frac{16}{12} = \frac{4}{3} \Rightarrow x + \frac{10}{2\sqrt{3}} = \pm\sqrt{\frac{4}{3}}$$

$$\Rightarrow x = \frac{-10}{2\sqrt{3}} \pm \frac{2}{\sqrt{3}} \Rightarrow x = \frac{-10+4}{2\sqrt{3}} \text{ or } x = \frac{-10-4}{2\sqrt{3}}$$

$$\Rightarrow \quad x = -\sqrt{3} \text{ or } x = \frac{-7}{\sqrt{3}}$$

Hence, the roots are $-\sqrt{3}$ and $\frac{-7}{\sqrt{2}}$.

23. We have, $p^2x^2 + (p^2 - q^2)x - q^2 = 0$

Comparing this equation with $ax^2 + bx + c = 0$, we have $a = p^2$, $b = p^2 - q^2$ and $c = -q^2$

$$b^2 - 4ac = (p^2 - q^2)^2 - 4 \times p^2 \times (-q^2)$$
$$= (p^2 - q^2)^2 + 4p^2q^2 = (p^2 + q^2)^2 > 0$$

So, the given equation has real roots, which are given by

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-(p^2 - q^2) \pm (p^2 + q^2)}{2p^2}$$

$$\Rightarrow x = \frac{-p^2 + q^2 + p^2 + q^2}{2p^2} = \frac{q^2}{p^2}$$

or
$$x = \frac{-p^2 + q^2 - p^2 - q^2}{2p^2} = -1$$

Hence, the roots are $\frac{q^2}{n^2}$ and -1.

24. We have, $9x^2 - 9(a + b)x + (2a^2 + 5ab + 2b^2) = 0$

Comparing this equation with $Ax^2 + Bx + C = 0$, we have

$$A = 9$$
, $B = -9(a + b)$ and $C = 2a^2 + 5ab + 2b^2$

$$B^2 - 4AC = 81(a+b)^2 - 36(2a^2 + 5ab + 2b^2)$$

$$= 9a^2 + 9b^2 - 18ab = 9(a-b)^2 > 0$$

$$=9a^2 + 9b^2 - 18ab = 9(a - b)^2 \ge 0$$

So, the roots of the given equation are real and are given

$$x = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A} = \frac{9(a+b) \pm 3(a-b)}{18}$$

$$\Rightarrow x = \frac{9(a+b) + 3(a-b)}{18} = \frac{12a + 6b}{18} = \frac{2a+b}{3}$$

or
$$x = \frac{9(a+b) - 3(a-b)}{18} = \frac{6a + 12b}{18} = \frac{a + 2b}{3}$$

Hence, the roots are $\frac{2a+b}{3}$ and $\frac{a+2b}{3}$.

25. We have, $abx^2 + (b^2 - ac)x - bc = 0$

Comparing this equation with $Ax^2 + Bx + C = 0$, we have A = ab, $B = b^2 - ac$ and C = -bc

$$B^2 - 4AC = (b^2 - ac)^2 - 4(ab)(-bc)$$

$$= (b^2 - ac)^2 + 4ab^2c = b^4 - 2ab^2c + a^2c^2 + 4ab^2c = (b^2 + ac)^2 \ge 0$$

So, the given equation has real roots, which are given by

$$x = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A} = \frac{-(b^2 - ac) \pm (b^2 + ac)}{2ab}$$

$$\Rightarrow x = \frac{-(b^2 - ac) + (b^2 + ac)}{2ab} \text{ or } x = \frac{-(b^2 - ac) - (b^2 + ac)}{2ab}$$

$$\Rightarrow x = \frac{2ac}{2ab} \text{ or } x = \frac{-2b^2}{2ab} \Rightarrow x = \frac{c}{b} \text{ or } x = \frac{-b}{a}$$

Hence, the roots are $\frac{c}{h}$ and $\frac{-b}{c}$

26. We have, $\frac{1}{x-3} - \frac{1}{x+5} = \frac{1}{6}$, $x \ne 3$, -5

$$\Rightarrow \frac{(x+5)-(x-3)}{(x-3)(x+5)} = \frac{1}{6} \Rightarrow (8)6 = x^2 + 2x - 15$$

$$\Rightarrow x^2 + 2x - 63 = 0$$

Comparing the equation with $ax^2 + bx + c = 0$, we get a = 1, b = 2 and c = -63

$$b^2 - 4ac = (2)^2 - 4(1)(-63) = 4 + 252 = 256 > 0$$

So, the given equation has real roots, which are given by

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-2 \pm \sqrt{256}}{2(1)} = \frac{-2 \pm 16}{2}$$

$$\Rightarrow x = \frac{-2 + 16}{2} \text{ or } x = \frac{-2 - 16}{2} \Rightarrow x = 7 \text{ or } x = -9$$

Hence, the roots are 7 and -9.

27. We have,
$$x^2 + x + 7 = 0$$

Here, a = 1, b = 1 and c = 7.

$$D = b^2 - 4ac = (1)^2 - 4(1)(7) = 1 - 28 = -27$$

28. We have,
$$(4x - 3)^2 + 20x = 11$$

$$\Rightarrow$$
 16 x^2 + 9 - 24 x + 20 x = 11

$$\Rightarrow$$
 16x² - 4x - 2 = 0 \Rightarrow 8x² - 2x - 1 = 0

Here, a = 8, b = -2 and c = -1.

$$D = b^2 - 4ac = (-2)^2 - 4(8)(-1) = 4 + 32 = 36$$

29. We have, $x^2 - 8x + 16 = 0$

Here, a = 1, b = -8 and c = 16.

$$D = b^2 - 4ac = (-8)^2 - 4(1)(16) = 64 - 64 = 0$$

Thus, the given equation has real and equal roots.

30. We have,
$$4x^2 - 2\sqrt{3}x + 9 = 0$$

Here,
$$a = 4$$
, $b = -2\sqrt{3}$ and $c = 9$

$$D = b^2 - 4ac = \left(-2\sqrt{3}\right)^2 - 4(4)(9) = 12 - 144 = -132 < 0$$

Thus, the given equation has no real roots.

31. Let length of park = x m and

breadth of park = y m.

Perimeter of park = 2(x + y) = 80 (Given)

$$\Rightarrow$$
 $x + y = 40 \Rightarrow y = 40 - x$

Area of park = xy = 300 (Given)

$$\Rightarrow x(40 - x) = 300 \Rightarrow 40x - x^2 = 300$$

$$\Rightarrow x^2 - 40x + 300 = 0$$

Here, a = 1, b = -40 and c = 300.

$$D = b^2 - 4ac = (-40)^2 - 4(1)(300) = 1600 - 1200 = 400 > 0$$

:. Roots of (i) are real and distinct.

Hence, it is possible to design the given rectangular park.

32. We have,
$$kx^2 + 2x - 3 = 0$$

Here, a = k, b = 2 and c = -3.

$$D = b^2 - 4ac = (2)^2 - 4(k)(-3) = 4 + 12k$$

Now, the given equation has real and equal roots, so D = 0

$$\Rightarrow$$
 4 + 12 k = 0 \Rightarrow k = $\frac{-4}{12}$ = $\frac{-1}{3}$

33. We have, $2x^2 - 10x + k = 0$

Here, a = 2, b = -10 and c = k.

$$D = b^2 - 4ac = (-10)^2 - 4(2)(k) = 100 - 8k$$

Now, the given equation has real and equal roots, so D = 0

$$\Rightarrow 100 - 8k = 0 \Rightarrow k = \frac{100}{8} = \frac{25}{2}$$

34. We have, $5x^2 + kx - 4 = 0$

Here, a = 5, b = k and c = -4.

$$D = b^2 - 4ac = k^2 - 4(5)(-4) = k^2 + 80$$

Now, the given equation has real and equal roots, if D = 0

$$\Rightarrow k^2 + 80 = 0$$

...(i)

But k^2 is always positive.

So, for no value of k, D = 0.

Hence, equation has no real and equal roots.

35. We have,
$$(n + 3)x^2 - (5 - n)x + 1 = 0$$

Here, a = n + 3, b = -(5 - n) and c = 1.

$$D = b^2 - 4ac = (-(5-n))^2 - 4(n+3)(1)$$

$$= 25 + n^2 - 10n - 4n - 12$$

$$= n^2 - 14n + 13 = n^2 - 13n - n + 13$$

$$= n(n-13) - 1(n-13) = (n-13)(n-1)$$

Now, the given equation has coincident roots, *i.e.*, equal roots, so D = 0

$$\Rightarrow$$
 $(n-13)(n-1) = 0 \Rightarrow n = 1 \text{ or } n = 13$

MtG BEST SELLING BOOKS FOR CLASS 10

























